The Spectral Sensitivity of the Goldfish and the Clawed Toad Tadpole Under Photopic Conditions

1965 ◽  
Vol 42 (3) ◽  
pp. 481-493
Author(s):  
J. R. CRONLY-DILLON ◽  
W. R. A. MUNTZ

1. Photopic spectral sensitivity curves have been obtained by means of the optomotor response for the tadpole of the clawed toad (Xenopus laevis), and for the goldfish (Carassius auratus). Both these animals have visual pigments based on vitamin A2, and would be expected therefore to have photopic sensitivity curves maximal at about 615 mµ and fitting, at any rate approximately, the absorption spectrum of cyanopsin. 2. The results with Xenopus show a broad curve extending far into the red, and having its maximal sensitivity at about 630 mµ It is probable that this curve reflects the summated activity of two receptors, maximally sensitive at 610 and 630 m/t. 3. The results are discussed in relation to other behavioural work with Xenopus, using the phototactic response, in which an entirely different form of spectral curve was obtained, and in relation to behavioural and physiological data which are available for Rana. 4. The photopic curve of the goldfish shows three humps, which can be separated out to a large extent by using different background illuminations. One hump is maximal at about 610 mµ, the classical position for cone sensitivity in freshwater fish. A second hump is maximal at about 530 mµ and is probably due to the rods, and the third hump is maximal at about 450 mµ in the blue. The relation of these three receptors to colour vision in this animal are discussed.

1989 ◽  
Vol 142 (1) ◽  
pp. 207-214
Author(s):  
A. T. Tsin ◽  
S. N. Gentles ◽  
E. A. Castillo

Two groups of goldfish (Carassius auratus) were subjected to light and temperature conditions known to promote a contrast in their scotopic visual pigment compositions. After 3 weeks, the porphyropsin/rhodopsin ratio in the neuroretina of these goldfish ranged from 99% porphyropsin in one group to 59% in the other. Samples of blood, liver and retinal pigment epithelium (RPE) were also removed from these animals and analysed by high-performance liquid chromatography (HPLC) for vitamin A composition. There was consistently more vitamin A2 than vitamin A1 (over 50% vitamin A2) in both vitamin A alcohol and vitamin A esters extracted from the liver and the RPE. In contrast, only 30% of all vitamin A extracted from the blood was vitamin A2. These observations suggest that it is mainly vitamin A1 that is transported in the blood, whereas vitamin A2 is selectively retained in the liver and in the RPE and used to form porphyropsin in the eye.


2021 ◽  
Vol 8 (8) ◽  
pp. 210415
Author(s):  
Megumi Matsuo ◽  
Yasuhiro Kamei ◽  
Shoji Fukamachi

Various procedures have been adopted to investigate spectral sensitivity of animals, e.g. absorption spectra of visual pigments, electroretinography, optokinetic response, optomotor response (OMR) and phototaxis. The use of these techniques has led to various conclusions about animal vision. However, visual sensitivity should be evaluated consistently for a reliable comparison. In this study, we retrieved behavioural data of several fish species using a single OMR procedure and compared their sensitivities to near-infrared light. Besides cavefish that lack eyes, some species were not appropriate for the OMR test because they either stayed still or changed swimming direction frequently. Eight of 13 fish species tested were OMR positive. Detailed analyses using medaka, goldfish, zebrafish, guppy, stickleback and cichlid revealed that all the fish were sensitive to light at a wavelength greater than or equal to 750 nm, where the threshold wavelengths varied from 750 to 880 nm. Fish opsin repertoire affected the perception of red light. By contrast, the copy number of long-wavelength-sensitive ( LWS ) genes did not necessarily improve red-light sensitivity. While the duplication of LWS and other cone opsin genes that has occurred extensively during fish evolution might not aid increasing spectral sensitivity, it may provide some other advantageous ophthalmic function, such as enhanced spectral discrimination.


2020 ◽  
Vol 117 (26) ◽  
pp. 15112-15122 ◽  
Author(s):  
Mary Caswell Stoddard ◽  
Harold N. Eyster ◽  
Benedict G. Hogan ◽  
Dylan H. Morris ◽  
Edward R. Soucy ◽  
...  

Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds’ extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.


1953 ◽  
Vol 9 (1) ◽  
pp. 24-30 ◽  
Author(s):  
H. J. A. DARTNALL

1997 ◽  
Vol 14 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Ruth R. Bennett ◽  
Richard H. White ◽  
Jeffery Meadows

AbstractThe compound eye of the tobacco hornworm moth Manduca sexta contains green-, blue-, and ultraviolet-sensitive photoreceptors. Electroretinogram spectral-sensitivity measurements were recorded from different regions of the retina in order to broadly map the distribution of the three receptor types. The relative contribution of the three receptors to spectral-sensitivity curves was estimated by fitting theoretical curves based on the absorption spectra of the three rhodopsins. This analysis indicated that the dorsal retina is green and ultraviolet dichromatic, with green-sensitive cells greatly predominating. The ventral retina is trichromatic with a substantial population of blue- and ultraviolet-sensitive receptors. We previously showed that flower visitation for nectar feeding is mediated mainly by blue-sensitive cells. Their localization in the ventral retina seems an appropriate adaptation of the receptor mosaic, since the moths hover above flowers as they feed.


2013 ◽  
Vol 109 (4) ◽  
pp. 1202-1213 ◽  
Author(s):  
Y.-S. Hung ◽  
J. P. van Kleef ◽  
G. Stange ◽  
M. R. Ibbotson

By measuring insect compensatory optomotor reflexes to visual motion, researchers have examined the computational mechanisms of the motion processing system. However, establishing the spectral sensitivity of the neural pathways that underlie this motion behavior has been difficult, and the contribution of the simple eyes (ocelli) has been rarely examined. In this study we investigate the spectral response properties and ocellar inputs of an anatomically identified descending neuron (DNII2) in the honeybee optomotor pathway. Using a panoramic stimulus, we show that it responds selectively to optic flow associated with pitch rotations. The neuron is also stimulated with a custom-built light-emitting diode array that presented moving bars that were either all-green (spectrum 500–600 nm, peak 530 nm) or all-short wavelength (spectrum 350–430 nm, peak 380 nm). Although the optomotor response is thought to be dominated by green-sensitive inputs, we show that DNII2 is equally responsive to, and direction selective to, both green- and short-wavelength stimuli. The color of the background image also influences the spontaneous spiking behavior of the cell: a green background produces significantly higher spontaneous spiking rates. Stimulating the ocelli produces strong modulatory effects on DNII2, significantly increasing the amplitude of its responses in the preferred motion direction and decreasing the response latency by adding a directional, short-latency response component. Our results suggest that the spectral sensitivity of the optomotor response in honeybees may be more complicated than previously thought and that ocelli play a significant role in shaping the timing of motion signals.


2007 ◽  
Vol 40 (8) ◽  
pp. 2251-2260 ◽  
Author(s):  
Jian Fu ◽  
H. John Caulfield

Sign in / Sign up

Export Citation Format

Share Document