Membrane Potentials in Amoeba Proteus

1966 ◽  
Vol 45 (2) ◽  
pp. 251-267
Author(s):  
M. S. BINGLEY

1. Amoebae can be penetrated by microelectrodes at either end. One records voltage and the other supplies alternating current. 2. Step-like increases in alternating voltage superimposed on potentials recorded by the voltage electrode when in either the pseudopod or rear region demonstrate that low potentials recorded from a pseudopod and high ones from the rear region exist across a discrete impedance barrier. The only structure so far shown to fulfil this function is the plasma membrane. 3. A resistance inserted in the earth path monitors current flowing through the system and confirms observations made when recording with single electrodes that there is a reduction of electrode resistance when the cell is entered. 4. Pronounced depolarization in the rear region is shown when the current-carrying electrode penetrates the pseudopod, but not vice versa. 5. Morphological changes associated with membrane potential reversal are illustrated. 6. Consideration is given to the role of step-like potential changes in movement.

2005 ◽  
Vol 16 (9) ◽  
pp. 4231-4242 ◽  
Author(s):  
Katy Janvier ◽  
Juan S. Bonifacino

The limiting membrane of the lysosome contains a group of transmembrane glycoproteins named lysosome-associated membrane proteins (Lamps). These proteins are targeted to lysosomes by virtue of tyrosine-based sorting signals in their cytosolic tails. Four adaptor protein (AP) complexes, AP-1, AP-2, AP-3, and AP-4, interact with such signals and are therefore candidates for mediating sorting of the Lamps to lysosomes. However, the role of these complexes and of the coat protein, clathrin, in sorting of the Lamps in vivo has either not been addressed or remains controversial. We have used RNA interference to show that AP-2 and clathrin—and to a lesser extent the other AP complexes—are required for efficient delivery of the Lamps to lysosomes. Because AP-2 is exclusively associated with plasma membrane clathrin coats, our observations imply that a significant population of Lamps traffic via the plasma membrane en route to lysosomes.


1989 ◽  
Vol 94 (3) ◽  
pp. 585-591
Author(s):  
A. Koffer ◽  
B.D. Gomperts

This study addresses the question of the role of cytoplasmic proteins in exocytosis from permeabilised rat mast cells. We have used two different methods of cell permeabilisation (ATP4- and streptolysin O) to regulate the size of the plasma membrane lesions, and thus to dictate the rate and extent of efflux of the cytosolic proteins, and compared the secretory response of the two preparations. We report evidence for the existence of two factors present in the cytosol, which affect the exocytotic mechanism in opposing manners. One of these is required for the maintenance of cell responsiveness; it is retained for more than 120 min by ATP4- -permeabilised cells but lost within 60 min from cells permeabilised by streptolysin O. The other factor, which leaks immediately from cells treated from streptolysin O, but only gradually from cells treated with ATP4-, has the effect of suppressing the affinity for both Ca2+ and guanine nucleotide in the exocytotic reaction.


1978 ◽  
Vol 78 (1) ◽  
pp. 199-213 ◽  
Author(s):  
B L Maloff ◽  
S P Scordilis ◽  
C Reynolds ◽  
H Tedeschi

The membrane potentials and resistances of giant mitochondria from mice fed cuprizone have been studied. They were found to correspond approx. 10-20 mV, positive inside, and 2 M omega, respectively. These properties were found to be independent of the metabolic state. The microelectrodes were in the inner mitochondrial space since (a) the potentials in the presence of valinomycin depended on the K+ concentration of the medium and magnitude of the K+ diffusion potentials was consistent with the presence of a high internal concentration of K+, (b) almost identical results were obtained with mitochondria from which the external membrane had been removed and the cristae were evaginated, and (c) punch-through experiments, in which the microelectrodes were advanced until they emerged through the other side of the mitochondria, showed an identical membrane potential both in the presence and in the absence of valinomycin. The potentials were stable under a variety of conditions and showed no sign of decay of membrane leakiness. Detailed evidence that the impaled mitochondria are metabolically viable will be presented in a separate publication.


1985 ◽  
Vol 225 (3) ◽  
pp. 671-680 ◽  
Author(s):  
G Schmalzing

Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of −74mV and −47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.


1998 ◽  
Vol 330 (3) ◽  
pp. 1283-1291 ◽  
Author(s):  
Richard POULIN ◽  
Chenqi ZHAO ◽  
Savita VERMA ◽  
René CHAREST-GAUDREAULT ◽  
Marie AUDETTE

The mechanism of mammalian polyamine transport is poorly understood. We have investigated the role of plasma-membrane potential (ΔΨpm) in putrescine and spermidine uptake in ZR-75-1 human breast cancer cells. The rate of [3H]putrescine and [3H]spermidine uptake was inversely correlated to extracellular [K+] ([K+]o) and to ΔΨpm, as determined by the accumulation of [3H]tetraphenylphosphonium bromide (TPP). Inward transport was unaffected by a selective decrease in mitochondrial potential (ΔΨmit) induced by valinomycin at low [K+]o, but was reduced by ≈ 60% by the rheogenic protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), which rapidly (≤ 15 min) collapsed both ΔΨpm and ΔΨmit. Plasma-membrane depolarization by high [K+]o or CCCP did not enhance putrescine efflux in cells pre-loaded with [3H]putrescine, suggesting that decreased uptake caused by these agents did not result from a higher excretion rate. On the other hand, the electroneutral K+/H+ exchanger nigericin (10 μM) co-operatively depressed [3H]TPP, [3H]putrescine and [3H]spermidine uptake in the presence of ouabain. Suppression of putrescine uptake by nigericin+ouabain was Na+-dependent, suggesting that plasma-membrane repolarization by the electrogenic Na+ pump was required upon acidification induced by nigericin, due to the activation of the Na+/H+ antiporter. The sole addition of 5-N,N-hexamethylene amiloride, a potent inhibitor of the Na+/H+ antiporter, strongly inhibited putrescine uptake in a competitive fashion [Ki 4.0±0.9 (S.D.) μM], while being a weaker antagonist of spermidine uptake. The potency of a series of amiloride analogues to inhibit putrescine uptake was clearly different from that of the Na+/H+ antiporter, and resembled that noted for Na+ co-transport proteins. These data demonstrate that putrescine and spermidine influx is mainly unidirectional and strictly depends on ΔΨpm, but not ΔΨmit. This report also provides first evidence for a high-affinity amiloride-binding site on the putrescine carrier, which provides new insight into the biochemical properties of this transporter.


1980 ◽  
Vol 186 (1) ◽  
pp. 21-33 ◽  
Author(s):  
I D Scott ◽  
D G Nicholls

A method is described, based on the differential accumulation of Rb+ and methyltriphenylphosphonium, for the simultaneous estimation of the membrane potentials across the plasma membrane of isolated nerve endings (synaptosomes), and across the inner membrane of mitochondria within the synaptosomal cytoplasm. These determinations, together with measurements of respiratory rates, and ATP and phosphocreatine concentrations, are used to define the bioenergetic behaviour of isolated synaptosomes under a variety of conditions. Under control conditions, in the presence of glucose, the plasma and mitochondrial membrane potentials are respectively 45 and 148mV. Addition of a proton translocator induces a 5-fold increase in respiration, and abolishes the mitochondrial membrane potential. The addition of rotenone to inhibit respiration does not affect the plasma membrane potential, and only lowers the mitochondrial membrane potential to 128mV. Evidence is presented that ATP synthesis by anaerobic glycolysis is sufficient under these conditions to maintain ATP-dependent processes, including the reversal of the mitochondrial ATP synthetase. Addition of oligomycin under non-respiring conditions leads to a complete collapse of the mitochondrial potential. Even under control conditions the plasma membrane (Na+ + K+)-dependent ATPase is responsible for a significant proportion of the synaptosomal ATP turnover. Veratridine greatly increases respiration, and depolarizes the plasma membrane, but only slightly lowers the mitochondrial membrane potential. High K+ and ouabain also lower the plasma membrane potential without decreasing the mitochondrial membrane potential. In non-respiring synaptosomes, anaerobic glycolysis is incapable of maintaining cytosolic ATP during the increased turnover induced by veratridine, and the mitochondrial membrane potential collapses. It is concluded that the internal mitochondria must be considered in any study of synaptosomal transport.


1986 ◽  
Vol 488 (1 Membrane Path) ◽  
pp. 525-526
Author(s):  
FRANCESCO VIRGILIO ◽  
P. DANIEL LEW ◽  
TOMMY ANDERSSON ◽  
SUSAN TREVES ◽  
TULLIO POZZAN

Development ◽  
1966 ◽  
Vol 16 (1) ◽  
pp. 41-47
Author(s):  
Roberto Narbaitz ◽  
Ruben Adler

The role of hormones in gonadal differentiation has not been fully elucidated. One of the main problems consists in determining the exact moment in which steroid synthesis begins. If, as has been claimed, sex hormones act as organizers and are responsible for the morphological changes which characterize gonadal differentiation, then they should appear before these changes take place. Although the morphological differentiation of chick gonads is evident only after the eighth day of incubation small differences in epithelium height permit sex identification on the seventh day. Biological (Wolff, 1946), biochemical (Gallien & Le Foulgoc, 1961) and histochemical (Scheib, 1959; Narbaitz & Sabatini, 1963; Narbaitz & Kolodny, 1964; Chieffi, Manelli, Botte & Mastrolia, 1964) evidence suggests that estrogen synthesis takes place in embryonic ovaries after the eighth day. On the other hand, steroid production by embryonic testes has not been proven.


1994 ◽  
Vol 107 (7) ◽  
pp. 1863-1873 ◽  
Author(s):  
M.A. Postner ◽  
E.F. Wieschaus

After the 13th nuclear division cycle of Drosophila embryogenesis, cortical microfilaments are reorganized into a hexagonal network that drives the subsequent cellularization of the syncytial embryo. Zygotic transcription of the nullo and serendipity-alpha genes is required for normal structuring of the microfilament network. When either gene is deleted, the network assumes an irregular configuration leading to the formation of multinucleate cells. To investigate the role of these genes during cellularization, we have made monoclonal antibodies to both proteins. The nullo protein is present from cycle 13 through the end of cellularization. During cycle 13, it localizes between interphase actin caps and within metaphase furrows. In cellularizing embryos, nullo co-localizes with the actin-myosin network and invaginates along with the leading edge of the plasma membrane. The serendipity-alpha (sry-alpha) protein co-localizes with nullo protein to the hexagonal network but, unlike the nullo protein, it localizes to the sides rather than the vertices of each hexagon. Mutant embryos demonstrate that neither protein translationally regulates the other, but the localization of the sry-alpha protein to the hexagonal network is dependent upon nullo.


2005 ◽  
Vol 93 (3) ◽  
pp. 1557-1568 ◽  
Author(s):  
Lei Zhu ◽  
David Lovinger ◽  
Eric Delpire

As excitable cells, neurons experience constant changes in their membrane potential due to ion flux through plasma membrane channels. They maintain their transmembrane cation concentrations through robust Na+/K+-ATPase pump activity. During synaptic transmission and spread of action potentials, the concentration of the major anion, Cl−, is also under constant challenge from membrane potential changes. Moreover, intracellular Cl− is also affected by ligand-gated Cl− channels such as GABAA and glycine receptors. To regulate intracellular Cl− in an electrically silent manner, neurons couple the movement of Cl− with K+. In this study, we have used gene-targeted KCC2−/− mice to provide strong evidence that KCC2, the neuronal-specific K-Cl co-transporter, drives neuronal Cl− to low concentrations, shifting the GABA reversal potential toward more negative potentials, thus promoting hyperpolarizing GABA responses. Cortical neurons lacking KCC2, not only fail to show a developmental decrease in [Cl−]i, but also are unable to regulate [Cl−]i on Cl− loading or maintain [Cl]i during membrane depolarization. These data are consistent with the central role of KCC2 in promoting inhibition and preventing hyperexcitability.


Sign in / Sign up

Export Citation Format

Share Document