scholarly journals Membrane potentials and resistances of giant mitochondria. Metabolic dependence and the effects of valinomycin.

1978 ◽  
Vol 78 (1) ◽  
pp. 199-213 ◽  
Author(s):  
B L Maloff ◽  
S P Scordilis ◽  
C Reynolds ◽  
H Tedeschi

The membrane potentials and resistances of giant mitochondria from mice fed cuprizone have been studied. They were found to correspond approx. 10-20 mV, positive inside, and 2 M omega, respectively. These properties were found to be independent of the metabolic state. The microelectrodes were in the inner mitochondrial space since (a) the potentials in the presence of valinomycin depended on the K+ concentration of the medium and magnitude of the K+ diffusion potentials was consistent with the presence of a high internal concentration of K+, (b) almost identical results were obtained with mitochondria from which the external membrane had been removed and the cristae were evaginated, and (c) punch-through experiments, in which the microelectrodes were advanced until they emerged through the other side of the mitochondria, showed an identical membrane potential both in the presence and in the absence of valinomycin. The potentials were stable under a variety of conditions and showed no sign of decay of membrane leakiness. Detailed evidence that the impaled mitochondria are metabolically viable will be presented in a separate publication.

1966 ◽  
Vol 45 (2) ◽  
pp. 251-267
Author(s):  
M. S. BINGLEY

1. Amoebae can be penetrated by microelectrodes at either end. One records voltage and the other supplies alternating current. 2. Step-like increases in alternating voltage superimposed on potentials recorded by the voltage electrode when in either the pseudopod or rear region demonstrate that low potentials recorded from a pseudopod and high ones from the rear region exist across a discrete impedance barrier. The only structure so far shown to fulfil this function is the plasma membrane. 3. A resistance inserted in the earth path monitors current flowing through the system and confirms observations made when recording with single electrodes that there is a reduction of electrode resistance when the cell is entered. 4. Pronounced depolarization in the rear region is shown when the current-carrying electrode penetrates the pseudopod, but not vice versa. 5. Morphological changes associated with membrane potential reversal are illustrated. 6. Consideration is given to the role of step-like potential changes in movement.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3420
Author(s):  
Marc Jofre ◽  
Lluís Jofre ◽  
Luis Jofre-Roca

The investigation of the electromagnetic properties of biological particles in microfluidic platforms may enable microwave wireless monitoring and interaction with the functional activity of microorganisms. Of high relevance are the action and membrane potentials as they are some of the most important parameters of living cells. In particular, the complex mechanisms of a cell’s action potential are comparable to the dynamics of bacterial membranes, and consequently focusing on the latter provides a simplified framework for advancing the current techniques and knowledge of general bacterial dynamics. In this work, we provide a theoretical analysis and experimental results on the microwave detection of microorganisms within a microfluidic-based platform for sensing the membrane potential of bacteria. The results further advance the state of microwave bacteria sensing and microfluidic control and their implications for measuring and interacting with cells and their membrane potentials, which is of great importance for developing new biotechnologically engineered systems and solutions.


1991 ◽  
Vol 159 (1) ◽  
pp. 303-324 ◽  
Author(s):  
K. Kirk

The characteristics of K+ transport in erythrocytes from the river lamprey (Lampetra fluviatilis) were investigated using standard radioisotope flux techniques. The cells were shown to have a ouabain-sensitive transport pathway that carried 43K+ and 86Rb+ into the cell at similar rates. Most of the ouabain-resistant 43K+ and 86Rb+ influx was via a pathway that was insensitive to cotransport inhibitors and to the replacement of extracellular Cl- or Na+. This pathway showed a strong selectivity for 43K+ over 86Rb+. It was inhibited fully by Ba2+ (I50 approximately 2.8 mumol l-1), amiloride (I50 approximately 150 mumol l-1) and ethylisopropylamiloride (I50 approximately 3.3 mumol l-1) and less effectively by quinine and by the tetraethylammonium ion. Inhibition by Ba2+ took full effect within a few minutes whereas the full inhibitory effect of amiloride took more than 1 h to develop. Experiments with the membrane potential probe [14C]tetraphenylphosphonium ion gave results consistent with the lamprey erythrocyte membrane having a Ba(2+)-sensitive K+ conductance that was significantly greater than the membrane Na+ conductance and which gave rise to a marked dependence of the membrane potential on the extracellular K+ concentration. The rate constants for Ba(2+)-sensitive 43K+ and 86Rb+ influx decreased (proportionally) with increasing extracellular K+ concentration in a manner that was consistent with the transport being via a conductive pathway. The decrease was attributed to a depolarisation of the membrane (in response to the increasing extracellular K+ concentration) and a consequent decrease in the driving force for the conductive movement of 43K+ and 86Rb+ into the cells. Ba(2+)-sensitive 86Rb+ influx increased significantly with decreasing cell volume and with increasing intracellular pH (at a constant extracellular pH) but increased only slightly with increasing extracellular pH. The pathway operated normally in the complete absence of extracellular Ca2+ but its activity decreased in cells pretreated with ionomycin and EGTA; this suggests a role for intracellular Ca2+ in the operation of the pathway.


1979 ◽  
Vol 78 (1) ◽  
pp. 29-45
Author(s):  
MAURIZIO MIROLLI

1. The response of the coxal receptors of the crab Scylla serrata to step stretches consisted of a partial action potential, Vα, followed by a steady-state depolarization, V8. The input resistance of the fibre was reduced during V8. 2. In the absence of stimulation, the dendrites of the receptors depolarized when external Na+ was substituted with choline or Li+, and when the external K+ concentration was increased or decreased. The dendrites also depolarized when ouabain was added to the saline. 3. The amplitude of both Vα and V8 was dependent on external Na+. In cells which were depolarized by ouabain, the amplitude of V8 increased when the K+ concentration of the saline was reduced. 4. V8 was followed by a small, but long-lasting, after-potential which was depolarizing when the membrane potential was between −70 and −60 mV. In cells depolarized by ouabain or by low K+ saline, the after-potential became hyperpolarizing. 5. When trains of brief stretches (each 5 ms in duration) were used as stimuli, the cells responded with trains of Vα responses. During this tetanic stimulation the cells hyperpolarized; cessation of the stimulus train was followed by a long-lasting hyperpolarization (PTH). 6. PTH was abolished in Li+ saline, in low K+ saline, and in the presence of ouabain. In control or in low K+ saline, PTH was not accompanied by a decrease in the input resistance of the fibres. 7. It is concluded that an electrogenic Na+ pump (or equivalent process) contributes a substantial fraction of the membrane potential of the unstimulated coxal receptors. Pump activity could be increased by Na+-loading the distal part of the cells with trains of Vα responses. By contrast, during the steady-state response to stretch, the pump was not activated.


1991 ◽  
Vol 99 (1) ◽  
pp. 67-72
Author(s):  
Y. Nakaoka ◽  
R. Tokioka ◽  
T. Shinozawa ◽  
J. Fujita ◽  
J. Usukura

Paramecium bursaria is photosensitive and accumulates in a lighted area. The cells can be deciliated by a brief suspension in dilute ethanol. Both intact and deciliated cells showed depolarization in response to light stimulation by a step-increase from dark to above 0.7 mW cm-2 (550 nm). On the other hand, after a step-increase to below 0.4 mW cm-1, intact cells showed hyperpolarization, while the deciliated cells showed no change in membrane potential. This difference in membrane potential response between ciliated and deciliated cells suggests that both somatic and ciliary structures are photosensitive. In our search for the photoreceptive molecules, a polyclonal antibody induced in rabbits against frog rhodopsin was found to cross-react with a 63x10(3) Mr protein of P. bursaria, by immunoelectrophoresis. Immunocytochemical studies showed that the antibody labeling was localized on both the ciliary and the somatic membranes. These results raise the possibility that P. bursaria may contain a rhodopsin-like protein as a photoreceptor molecule.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Julia R. Lazzari-Dean ◽  
Anneliese M.M. Gest ◽  
Evan W. Miller

Membrane potential (Vmem) is a fundamental biophysical signal present in all cells. Vmem signals range in time from milliseconds to days, and they span lengths from microns to centimeters. Vmem affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for Vmem quantification in many of these areas. In this review, we outline the diverse biology of Vmem, drafting a wish list of features for a Vmem sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating Vmem. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in Vmem. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute Vmem enable new inquiries into Vmem biology. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1979 ◽  
Vol 57 (9) ◽  
pp. 944-956 ◽  
Author(s):  
K. Krnjević ◽  
Y. Lamour ◽  
J. F. MacDonald ◽  
A. Nistri

In cats under Dial, Co, Mn, La, and Sr were injected extracellularly near lumbosacral motoneurones. All tended to improve intracellular recording, but when the membrane potential was initially stable, Mn, and especially Co, had a moderate and reproducible depolarizing action. Both Mn and Co depressed excitatory postsynaptic potentials evoked by dorsal root stimulation. The prominent after-hyperpolarization (a.h.p.), which normally follows the motoneuronal action potential, was consistently and reversibly depressed by Mn and Co (as well as La), the underlying conductance increase being also diminished, but there was no significant reduction in the after-depolarization. By contrast, Sr tended to potentiate the a.h.p., especially when this was depressed by a previous injection of Co or Mn. Unlike the other cations, Co had a marked depressant effect on the action potential, particularly its rate of rise. Since the action potential could be immediately restored by hyperpolarization or by an injection of Sr (in the absence of depolarization), Co may enhance Na inactivation.


2007 ◽  
Vol 292 (1) ◽  
pp. R388-R395 ◽  
Author(s):  
Cristina E. Molina ◽  
Hans Gesser ◽  
Anna Llach ◽  
Lluis Tort ◽  
Leif Hove-Madsen

Application of the current-clamp technique in rainbow trout atrial myocytes has yielded resting membrane potentials that are incompatible with normal atrial function. To investigate this paradox, we recorded the whole membrane current ( Im) and compared membrane potentials recorded in isolated cardiac myocytes and multicellular preparations. Atrial tissue and ventricular myocytes had stable resting potentials of −87 ± 2 mV and −83.9 ± 0.4 mV, respectively. In contrast, 50 out of 59 atrial myocytes had unstable depolarized membrane potentials that were sensitive to the holding current. We hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at −120 mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from −78 ± 3 to −84 ± 3 mV, and stabilized the resting membrane potential at −92 ± 4 mV. ACh also shortened the action potential in both atrial myocytes and tissue, and this effect was antagonized by atropine. When applied alone, atropine prolonged the action potential in atrial tissue but had no effect on membrane potential, action potential, or Im in isolated atrial myocytes. This suggests that ACh-mediated activation of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential.


2019 ◽  
Vol 29 (3) ◽  
pp. 443-455 ◽  
Author(s):  
Nadezhda N. Barysheva ◽  
Sergey P. Pronin

Introduction. The germination of wheat seeds is an important indicator of their quality, used to calculate and adjust the seeding rate. It is necessary to take into account germination changes at the storage stage. The solution of this problem will be development of a method that will allow to determinate germination at any technological stage (at the stage of harvesting, storage, seeding).The aim of the article is to study the dependence of membrane potential on grain quality, to develop a method for determining the germination of wheat seeds based on their membrane potentials. Materials and Methods. The authors' review of research papers about methods of assessing the wheat seeds quality indicates the need for the development of highly sensitive methods of the germination test, which allow one to ensure the speed of measurement and obtain more accurate results for further use. An approach was developed on the basis of the review, which allows for solving the problem using the method based on the study of membrane potentials of wheat seeds. Results. In this article, the study of the dependence of wheat seeds membrane potential from their germination was conducted. The results of experiments confirmed that the value of the potential could be used as quality assessment parameter. The requirements and optimal conditions for conducting the experiment were determined. Discussion and Conclusion. The dependence of the wheat seeds membrane potential on their germination was established and the method for determining wheat seeds germination was developed. The implementation of this method will allow agricultural enterprises and farms to carry out the rapid assessment of wheat seeds germination at any technological stage (at the stage of harvesting, storage, seeding).


1987 ◽  
Vol 58 (1) ◽  
pp. 160-179 ◽  
Author(s):  
J. J. Hablitz ◽  
R. H. Thalmann

1. Single-electrode current- and voltage-clamp techniques were employed to study properties of the conductance underlying an orthodromically evoked late synaptic hyperpolarization or late inhibitory postsynaptic potential (IPSP) in CA3 pyramidal neurons in the rat hippocampal slice preparation. 2. Late IPSPs could occur without preceding excitatory postsynaptic potentials at the resting membrane potential and were graded according to the strength of the orthodromic stimulus. The membrane hyperpolarization associated with the late IPSP peaked within 140-200 ms after orthodromic stimulation of mossy fiber afferents. The late IPSP returned to base line with a half-decay time of approximately 200 ms. 3. As determined from constant-amplitude hyperpolarizing-current pulses, the membrane conductance increase during the late IPSP, and the time course of its decay, were similar whether measurements were made near the resting membrane potential or when the cell was hyperpolarized by approximately 35 mV. 4. When 1 mM cesium was added to the extracellular medium to reduce inward rectification, late IPSPs could be examined over a range of membrane potentials from -60 to -140 mV. For any given neuron, the late IPSP amplitude-membrane potential relationship was linear over the same range of membrane potentials for which the slope input resistance was constant. The late IPSP reversed symmetrically near -95 mV. 5. Intracellular injection of ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid or extracellular application of forskolin, procedures known to reduce or block certain calcium-dependent potassium conductances in CA3 neurons, had no significant effect on the late IPSP. 6. Single-electrode voltage-clamp techniques were used to analyze the time course and voltage sensitivity of the current underlying the late IPSP. This current [the late inhibitory postsynaptic current (IPSC)] began as early as 25 ms after orthodromic stimulation and reached a peak 120-150 ms following stimulation. 7. The late IPSC decayed with a single exponential time course (tau = 185 ms). 8. A clear reversal of the late IPSC at approximately -99 mV was observed in a physiological concentration of extracellular potassium (3.5 mM).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document