Lightning Fast and Highly Sensitive Full-Length Single-cell sequencing using FLASH-Seq

2021 ◽  
Author(s):  
Jennifer Ann Black
2021 ◽  
Author(s):  
Vincent Hahaut ◽  
Dinko Pavlinic ◽  
Cameron Cowan ◽  
Simone Picelli

Abstract In the last 10 years, single-cell RNA-sequencing (scRNA-seq) has undergone exponential growth. Emulsion droplets methods, such as those commercialized by 10x Genomics, have allowed researchers to analyze tens of thousands of cells in parallel in a robust and reproducible way. However, in contrast to SMART-based full-length sequencing protocols, these methods interrogate only the outer portion of the transcripts and still lack the required sensitivity for analyzing comprehensively the transcriptome of individual cells. Building upon the existing SMART-seq forerunners protocols, we developed FLASH-Seq (FS), a new scRNA-seq method which displays greater sensitivity while decreasing incubation times and reducing the number of processing steps compared to its predecessors. The entire FS protocol - from lysed cells to pooled cDNA libraries - can be performed in ~4.5 hours, is automation-friendly and can be easily miniaturized to decrease costs.


2021 ◽  
Author(s):  
Vincent Hahaut ◽  
Dinko Pavlinic ◽  
Cameron S Cowan ◽  
Simone Picelli

In the last 10 years, single-cell RNA-sequencing (scRNA-seq) has undergone exponential growth. Emulsion droplets methods, such as those commercialized by 10x Genomics, have allowed researchers to analyze tens of thousands of cells in parallel in a robust and reproducible way. However, in contrast to SMART-based full-length sequencing protocols, these methods interrogate only the outer portion of the transcripts and still lack the required sensitivity for analyzing comprehensively the transcriptome of individual cells. Building upon the existing SMART-seq forerunners protocols, we developed FLASH-Seq (FS), a new scRNA-seq method which displays greater sensitivity while decreasing incubation times and reducing the number of processing steps compared to its predecessors. The entire FS protocol - from lysed cells to pooled cDNA libraries - can be performed in ~4.5 hours, is automation-friendly and can be easily miniaturized to decrease costs.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.


Author(s):  
Xue Bai ◽  
Yuxuan Li ◽  
Xuemei Zeng ◽  
Qiang Zhao ◽  
Zhiwei Zhang

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanping Long ◽  
Zhijian Liu ◽  
Jinbu Jia ◽  
Weipeng Mo ◽  
Liang Fang ◽  
...  

AbstractThe broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.


Sign in / Sign up

Export Citation Format

Share Document