scholarly journals From Oncogenic Signaling Pathways to Single-Cell Sequencing of Immune Cells: Changing the Landscape of Cancer Immunotherapy

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4573
Author(s):  
Céline Pisibon ◽  
Amira Ouertani ◽  
Corine Bertolotto ◽  
Robert Ballotti ◽  
Yann Cheli

The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Serena De Matteis ◽  
Matteo Canale ◽  
Alberto Verlicchi ◽  
Giuseppe Bronte ◽  
Angelo Delmonte ◽  
...  

Immunotherapy has offered a new opportunity for the treatment of many malignancies. In patients with lung cancer, immune checkpoint inhibitors have significantly improved survival. However, little is known about predictive factors or primary and acquired resistance mechanisms. Epithelial-to-mesenchymal transition (EMT) is a complex of phenotypic changes involved in carcinogenesis and resistance to cancer treatments. Specifically, immune cells in the tumor microenvironment can promote EMT, and mesenchymal phenotype acquisition negatively regulates the anticancer immune response. EMT is associated with higher expression of PD-L1 and other immune checkpoints. In this review, we focused on the role of EMT in the interplay between tumor cells and the immune system, with particular emphasis on lung cancer. On the basis of our findings, we hypothesize that the effects of EMT on immune cells could be overcome in this disease by a new combination of immune checkpoint inhibitors.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


Immunotherapy ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 409-418
Author(s):  
Stijn J De Keukeleire ◽  
Tijl Vermassen ◽  
Zahra M Nezhad ◽  
Tessa Kerre ◽  
Vibeke Kruse ◽  
...  

More patients with chronic hepatitis B and C infection are being exposed to immune checkpoint inhibitors (ICIs), but the safety and efficacy of ICIs in patients with chronic viral hepatitis are still poorly described. To explore this interaction, we identified eight studies of cancer patients with viral hepatitis treated with one or more ICIs, formally assessed tumor responses and safety by grading liver dysfunction. ICIs appear to be relatively safe in HBV/HCV-infected patients, and hepatitis related to viral reactivation is rare. In some patients, viral load regressed during ICI treatment, so immune checkpoints may play a role in viral clearance. HBV/HCV do not appear to be a contraindication to ICIs, although careful clinical and biochemical follow-up is recommended and, whenever necessary, antiviral therapy commenced.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jingyi Gong ◽  
Zsofia Drobni ◽  
Raza Alvi ◽  
Sean Murphy ◽  
Sarah Hartmann ◽  
...  

Introduction: Immune checkpoint inhibitors (ICI) lead to immune activation, increased inflammation and cancer cell death. Both immune activation and inflammation are critical pathobiological drivers for venous thromboembolism (VTE). There are no robust data testing the effect of ICIs on the risk of developing VTE. Methods: This is a retrospective study of 2854 patients who received ICIs at Massachusetts General Hospital, Boston, MA. VTE events, defined as a composite of deep vein thrombosis (DVT) or pulmonary embolism (PE), were identified by individual chart review and were blindly adjudicated using standard criteria. A case-crossover design was applied with an “at-risk period” defined as the two-year period after and the “control period” as the two years prior to treatment. Incidence rate ratio (IRR) was calculated using Poisson’s regression. Results: Immune checkpoint inhibitor use increased VTE risk by 1.84-fold from 4.85 per 100-person years to 8.91 per 100 person-years (IRR 1.84, 95% confidence interval: 1.54 - 2.19, p <0.001). Of the individual components, there was a 2.44-fold increase in DVT risk (2.30 to 5.58 per 100 person-years) and 1.68-fold increase in PE risk (2.96 to 5.00 per 100 person-years). Comparing patients with and without a VTE event, those with a VTE event after ICI initiation had a higher rate of prior VTE, lung cancer, urothelial cancer, and a higher platelet count and white blood cell count at baseline. At 6 months post ICI initiation, 165 (8.6%) patients had a VTE event and of these patients 136 (7.1%) had no prior VTE. Conclusions: Patients with cancer treated with ICIs are at increased risk of developing VTE. Whether prophylaxis for VTE among patients starting an ICI reduces this risk is unclear.


2019 ◽  
Vol 36 (6) ◽  
pp. 369-377 ◽  
Author(s):  
Gregory A Daniels ◽  
Angela D Guerrera ◽  
Donna Katz ◽  
Jayne Viets-Upchurch

Multiple drugs of a new class of cancer treatments called immune checkpoint inhibitors, which work by enabling the immune system to attack tumour cells, have been approved for a variety of indications in recent years. Immune checkpoints, such as cytotoxic T-lymphocyte antigen-4 and programmed death-1, are part of the normal immune system and regulate immune activation. Treatment with inhibitors of these checkpoints can significantly improve response rates, progression-free survival and overall survival of patients with cancer; it can also result in adverse reactions that present similarly to other conditions. These immune-mediated adverse reactions (IMARs) are most commonly gastrointestinal, respiratory, endocrine or dermatologic. Although patients’ presentations may appear similar to other types of cancer therapy, the underlying causes, and consequently their management, may differ. Prompt recognition is critical because, with appropriate management, most IMARs resolve and patients can continue receiving immune checkpoint inhibitor treatment. Rarely, these IMARs may be life-threatening and escape detection from the usual evaluations in the emergency environment. Given the unusual spectrum and mechanism of IMARs arising from immune checkpoint inhibitors, emergency departmentED staff require a clear understanding of the evaluation of IMARs to enable them to appropriately assess and treat these patients. Treatment of IMARs, most often with high-dose steroids, differs from chemotherapy-related adverse events and when possible should be coordinated with the treating oncologist. This review summarises the ED presentation and management of IMARs arising from immune checkpoint inhibitors and includes recommendations for tools and resources for ED healthcare professionals.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1689 ◽  
Author(s):  
Edoardo Giannini ◽  
Andrea Aglitti ◽  
Mauro Borzio ◽  
Martina Gambato ◽  
Maria Guarino ◽  
...  

Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this tumour remains difficult-to-cure for several reasons, starting from the particular disease environment where it arises—advanced chronic liver disease—to its heterogeneous clinical and biological behaviour. The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential application also in HCC, where there is evidence of intra-hepatic immune response activation. Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting that immune checkpoint blockade may have a strong rationale even in the treatment of HCC. According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody, showed promising results, and further studies exploring the effects of other immune checkpoint inhibitors, alone or with other drugs, are currently underway. However, we are still far from the identification of the correct setting, and sequence, where these drugs might be used in clinical practice, and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover, it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by analysing a large, multicentre cohort of Italian patients with HCC.


Immunotherapy ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 513-529
Author(s):  
Dmitrii Shek ◽  
Scott A Read ◽  
Liia Akhuba ◽  
Liang Qiao ◽  
Bo Gao ◽  
...  

Non-coding RNAs (ncRNAs) are an abundant component of the human transcriptome. Their biological role, however, remains incompletely understood. Nevertheless, ncRNAs are highly associated with cancer development and progression due to their ability to modulate gene expression, protein translation and growth pathways. Immune-checkpoint inhibitors (ICIs) are considered one of the most promising and highly effective therapeutic approaches for cancer treatment. ICIs are monoclonal antibodies targeting immune checkpoints such as CTLA-4, PD-1 and PD-L1 signalling pathways that stimulate T cell cytotoxicity and can result in tumor growth suppression. This Review will summarize existing knowledge regarding ncRNAs and their role in cancer and ICI therapy. In addition, we will discuss potential mechanisms by which ncRNAs may influence ICI treatment outcomes.


2019 ◽  
Vol 20 (16) ◽  
pp. 3934 ◽  
Author(s):  
Gilda Varricchi ◽  
Stefania Loffredo ◽  
Giancarlo Marone ◽  
Luca Modestino ◽  
Poupak Fallahi ◽  
...  

Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.


Sign in / Sign up

Export Citation Format

Share Document