Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

2019 ◽  
Author(s):  
Federico Pelisch
2019 ◽  
Vol 30 (19) ◽  
pp. 2503-2514 ◽  
Author(s):  
Che-Hang Yu ◽  
Stefanie Redemann ◽  
Hai-Yin Wu ◽  
Robert Kiewisz ◽  
Tae Yeon Yoo ◽  
...  

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.


2019 ◽  
Author(s):  
Che-Hang Yu ◽  
Stefanie Redemann ◽  
Hai-Yin Wu ◽  
Robert Kiewisz ◽  
Tae Yeon Yoo ◽  
...  

AbstractSpindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, i.e. on the region between chromosomes and poles. In comparison, microtubules in the central spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central spindle microtubules during chromosome segregation in human mitotic spindles, and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move towards spindle poles. In these systems, damaging central spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central spindle microtubules during chromosome segregation in diverse spindles, and suggest that central spindle microtubules and chromosomes are strongly coupled in anaphase.


2005 ◽  
Vol 43 (4) ◽  
pp. 469-478 ◽  
Author(s):  
Guojie Mao ◽  
Jordi Chan ◽  
Grant Calder ◽  
John H. Doonan ◽  
Clive W. Lloyd

1967 ◽  
Vol 2 (4) ◽  
pp. 529-536
Author(s):  
B. C. LU

Meiosis within fruiting bodies of Coprinus lagopus Fr. is closely synchronized. This conveniently facilitates joint light- and electron-microscope observations. Before nuclear fusion the chromatin appears diffuse in the light microscope; after nuclear fusion individual chromosomes can be recognized. In the electron micrographs the chromatin of pre-fusion and early fusion nuclei cannot be recognized as defined structures with the fixation and staining procedures employed. At the time of synapsis the lateral components of the synaptinemal complexes can be seen in the micrographs. The pairing process of the two chromosomes of the homologous pairs is believed to involve two steps: (1) two homologous chromosomes become aligned in parallel, and (2) pairing occurs by formation of the synaptinemal complex including the central synaptic component. The term synaptic centre is coined for the central component, which is believed to be the zone where crossing-over occurs. The formation of this structure in relation to homologous pairing, and the structural organization of the synaptinemal complexes are discussed. At meiotic metaphase, the chromosomes congregate around the central spindle microtubules. They are contracted and contain densely packed chromatin fibrils. Two types of spindle microtubules are demonstrated: (1) the chromosomal microtubules directly connecting the chromosomes to the centrosomes, and (2) the central spindle microtubules connecting the two centrosomes. The centrosomes are round, fibril-containing bodies approximately 0.3 µ in diameter. They have been observed outside the nuclear envelope at pachytene, but do not show the characteristic structure normally found in animal cells.


Open Biology ◽  
2013 ◽  
Vol 3 (8) ◽  
pp. 130081 ◽  
Author(s):  
Tetsuya Takeda ◽  
Iain M. Robinson ◽  
Matthew M. Savoian ◽  
John R. Griffiths ◽  
Anthony D. Whetton ◽  
...  

Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.


Author(s):  
W. Z. Cande ◽  
C.J. Hogan ◽  
M. Lee

Diatom spindles are important model systems for describing the morphological changes associated with anaphase chromosome movement because the fibrous systems responsible for anaphase A (chromosome-to-pole movement) and anaphase B (spindle elongation) are spatially separate and the central spindle is a paracrystalline array of microtubules. The diatom central spindle, which is responsible for anaphase B, is constructed of two sets of interdigiting microtubules that originate from plate-like spindle poles and display specific near-neighbor interactions in the zone of microtubule overlap. The microtubules of each half-spindle are of relatively unifrom length such that the plus ends are clustered together in narrow zones at each edge of the zone of microtubule overlap. This has allowed us to monitor changes in extent of microtubule overlap in the light microscope with polarization optics. We have isolated spindles from synchronized populations of several species of dividing diatom cells to study the mechanochemistry of anaphase spindle elongation in vitro and to analyze the rearrangement of spindle components by light and electron microscopy during reactivation.


1985 ◽  
Vol 101 (5) ◽  
pp. 1966-1976 ◽  
Author(s):  
J B Tucker ◽  
S A Mathews ◽  
K A Hendry ◽  
J B Mackie ◽  
D L Roche

Spindles underwent a 12-fold elongation before anaphase B was completed during the closed mitoses of micronuclei in Paramecium tetraurelia. Two main classes of spindle microtubules have been identified. A peripheral sheath of microtubules with diameters of 27-32 nm was found to be associated with the nuclear envelope and confined to the midportion of each spindle. Most of the other microtubules had diameters of approximately 24 nm and were present along the entire lengths of spindles. Nearly all of the 24-nm microtubules were eliminated from spindle midportions (largely because of microtubule disassembly) at a relatively early stage of spindle elongation. Disassembly of some of these microtubules also occurred at the ends of spindles. About 60% of the total microtubule content of spindles was lost at this stage. Most, perhaps all, peripheral sheath microtubules remained intact. Many of them detached from the nuclear envelope and regrouped to form a compact microtubule bundle in the spindle midportion. There was little, if any, further polymerization of 24-nm microtubules after the disassembly phase. Polymerization of microtubules with diameters of 27-32 nm continued as spindle elongation progressed. Most microtubules in the midportions of well-elongated spindles were constructed from 14-16 protofilaments. A few 24-nm microtubules with 13 protofilaments were also present. The implications of these findings for spatial control of microtubule assembly, disassembly, positioning, and membrane association, that apparently discriminate between microtubules with different protofilament numbers have been explored. The possibility that microtubule sliding occurs during spindle elongation has also been considered.


1978 ◽  
Vol 79 (3) ◽  
pp. 737-763 ◽  
Author(s):  
D H Tippit ◽  
D Schulz ◽  
J D Pickett-Heaps

The spindle of the colonial diatom Fragilaria contains two distinct sets of spindle microtubules (MTs): (a) MTs comprising the central spindle, which is composed of two half-spindles interdigitated to form a region of "overlap"; (b) MTs which radiate laterally from the poles. The central spindles from 28 cells are reconstructed by tracking each MT of the central spindle through consecutive serial sections. Because the colonies of Fragilaria are flat ribbons of contiguous cells (clones), it is possible, by using single ribbons of cells, to compare reconstructed spindles at different mitotic stages with minimal intercellular variability. From these reconstructions we have determined: (a) the changes in distribution of MTs along the spindle during mitosis; (b) the change in the total number of MTs during mitosis; (c) the length of each MT (measured by the number of sections each traverses) at different mitotic stages; (d) the frequency of different classes of MTs (i.e., free, continuous, etc.); (e) the spatial arrangement of MTs from opposite poles in the overlap; (f) the approximate number of MTs, separate from the central spindle, which radiate from each spindle pole. From longitudinal sections of the central spindle, the lengths of the whole spindle, half-spindle, and overlap were measured from 80 cells at different mitotic stages. Numerous sources of error may create inaccuracies in these measurements; these problems are discussed. The central spindle at prophase consists predominantly of continuous MTs (pole to pole). Between late prophase and prometaphase, spindle length increases, and the spindle is transformed into two half-spindles (mainly polar MTs) interdigitated to form the overlap. At late anaphase-telophase, the overlap decreases concurrent with spindle elongation. Our interpretation is that the MTs of the central spindle slide past one another at both late prophase and late anaphase. These changes in MT distribution have the effect of elongating the spindle and are not involved in the poleward movement of the chromosomes. Some aspects of tracking spindle MTs, the interaction of MTs in the overlap, formation of the prophase spindle, and our interpretation of rearrangements of MTs, are discussed.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34888 ◽  
Author(s):  
Paul Frenette ◽  
Eric Haines ◽  
Michael Loloyan ◽  
Mena Kinal ◽  
Paknoosh Pakarian ◽  
...  

2009 ◽  
Vol 20 (3) ◽  
pp. 963-972 ◽  
Author(s):  
Paula M. Grissom ◽  
Thomas Fiedler ◽  
Ekaterina L. Grishchuk ◽  
Daniela Nicastro ◽  
Robert R. West ◽  
...  

Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.


Sign in / Sign up

Export Citation Format

Share Document