Modelling of the Strain Hardening Behaviour of Die-Cast Magnesium-Aluminium-Rare Earth Alloy

2020 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Hua Qian Ang

The tensile deformation behaviour of magnesium alloy AE44 (Mg-4Al-4RE) under strain rates ranging from 10-6 to 10-1 s-1 has been investigated. Present study shows that the deformation mode begins with the activation of elastic (Stage 1), followed by <a> basal slip and twinning (Stage 2), <a> prismatic slip (Stage 3) and finally to <c+a> pyramidal slip (Stage 4). The commencement of these deformation mechanisms results in four distinct stages of strain hardening in the stress-strain curve. In this work, the four stages of deformation behaviour are modelled, and an empirical equation is proposed to predict the entire stress-strain curve. Overall, the model predictions are in good agreement with the experimental data. This study on the decomposition of stress-strain curve into four stages provides insights into the contribution of individual deformation mechanism to the overall deformation behaviour and opens a new way to assess mechanical properties of die-cast magnesium alloys.

2005 ◽  
Vol 40 (6) ◽  
pp. 599-607 ◽  
Author(s):  
X. P Huang

The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage models are based on different simplified material strain-hardening models, which assume linear strain-hardening or power strain-hardening or a combination of these strain-hardening models. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material is proposed. The model incorporates the von Mises yield criterion, an incompressible material, and the plane strain condition. Analytic expressions for the residual stress distribution have been derived. Experimental results show that the present model has a stronger curve-fitting ability and gives a more accurate prediction. Several other models are shown to be special cases of the general model presented in this paper. The parameters needed in the model are determined by fitting the actual tensile-compressive curve of the material, and the maximum strain of this curve should closely represent the maximum equivalent strain at the inner surface of the cylinder under maximum autofrettage pressure.


1977 ◽  
Vol 9 (6) ◽  
pp. 704-707 ◽  
Author(s):  
V. K. Babich ◽  
V. A. Pirogov ◽  
I. A. Vakulenko

2004 ◽  
pp. 13-31

Abstract This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion on the parameters that are used to describe the engineering stress-strain curve of a metal, namely, tensile strength, yield strength or yield point, percent elongation, and reduction in area. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. Next, it reviews the effect of strain rate and temperature on the stress-strain curve. The chapter then describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.


2010 ◽  
Vol 457 ◽  
pp. 114-119 ◽  
Author(s):  
Fredrik Wilberfors ◽  
Ingvar L. Svensson

The main purpose with this paper is to show the effect of nitrogen and inoculation on the tensile properties and microstructure of cast iron with lamellar graphite. Casting experiments were performed with the main composition: 3.4 % C, 2.0 % Si, 0.7 % Mn, 0.5 % Cu. The nitrogen content was varied between 90-180 ppm and inoculant was added as 0, 0.2 or 0.4 % by weight. The addition of inoculant changed the graphite structure from distribution D/B/A to distribution A, according to ISO 945. The eutectic cell size decreased significantly. The addition of inoculant had no influence on the hardness. The addition of nitrogen shortened the graphite flakes and increased the hardness. The influence on the eutectic cell size was low and there was no significant effect on the graphite distribution. Tensile test samples were analysed by true stress – true plastic strain in terms of the flow relationships proposed by Hollomon, , and Ludwigson, . The stress-strain curves were fitted to polynomial functions of the 6:th to 8:th order before evaluating the constants in order to eliminate noise from the measurements. This approach also enabled the slope of the stress-strain curve to be evaluated at zero stress (Young’s modulus), resulting in plastic strain from stress levels close to zero. The Hollomon flow relationship failed to describe the deformation behaviour for the whole range of the stress-strain curve. The correction terms in the Ludwigson flow relationship resulted in a better fit. The addition of inoculant mainly affected the strength coefficient, . The addition of nitrogen also affected the constant. The main reason for this was that the addition of inoculant influenced the last part of the stress-strain curve while the addition of nitrogen had an effect over the whole range of the curve. The addition of nitrogen and inoculant increased the tensile strength from 288 MPa to 393 MPa and the total elongation at fracture from 0.8 % to 1.6 %.


Author(s):  
James D. Hart ◽  
Nasir Zulfiqar ◽  
Joe Zhou

Buried pipelines can be exposed to displacement-controlled environmental loadings (such as landslides, earthquake fault movements, etc.) which impose deformation demands on the pipeline. When analyzing pipelines for these load scenarios, the deformation demands are typically characterized based on the curvature and/or the longitudinal tension and compression strain response of the pipe. The term “strain demand” is used herein to characterize the calculated longitudinal strain response of a pipeline subject to environmentally-induced deformation demands. The shape of the pipe steel stress-strain relationship can have a significant effect on the pipe strain demands computed using pipeline deformation analyses for displacement-controlled loading conditions. In general, with sufficient levels of imposed deformation demand, a pipe steel stress-strain curve with a relatively abrupt or “sharp” elastic-to-plastic transition will tend to lead to larger strain demands than a stress-strain curve with a relatively rounded elastic-to-plastic transition. Similarly, a stress-strain curve with relatively low strain hardening modulus characteristics will tend to lead to larger strain demands than a stress-strain curve with relatively high strain hardening modulus characteristics. High strength UOE pipe can exhibit significant levels of anisotropy (i.e., the shapes of the stress-strain relationships in the longitudinal tension/compression and hoop tension/compression directions can be significantly different). To the extent that the stress-strain curves in the different directions can have unfavorable shape characteristics, it follows that anisotropy can also play an important role in pipeline strain demand evaluations. This paper summarizes a pipeline industry research project aimed at evaluation of the effects of anisotropy and the shape of pipe steel stress-strain relationships on pipeline strain demand for X80 and X100 UOE pipe. The research included: a review of pipeline industry literature on the subject matter; a discussion of pipe steel plasticity concepts for UOE pipe; characterization of the anisotropy and stress-strain curve shapes for both conventional and high strain pipe steels; development of representative analytical X80 and X100 stress-strain relationships; and evaluation of a large matrix of ground-movement induced pipeline deformation scenarios to evaluate key pipe stress-strain relationship shape and anisotropy parameters. The main conclusion from this work is that pipe steel specifications for high strength UOE pipe for strain-based design applications should be supplemented to consider shape-characterizing parameters such as the plastic complementary energy.


2018 ◽  
Vol 913 ◽  
pp. 331-339 ◽  
Author(s):  
Ling Kang Ji ◽  
Hui Feng ◽  
Ji Ming Zhang ◽  
Hong Yuan Chen

The strain-hardening performance and characteristics of pipeline steel material have an important influence on the deformation behavior and arrest behavior of the line pipe. In this paper X70, selected, and the longitudinal and transverse tensile stress-strain curve and strain-hardening characteristics were analyzed. The results showed that the strain hardening exponent of the double-phased line pipes derived from the transvers stress-strain curve maintains relatively low level at early stage and increased gradually with variation of strain, which was different from the strain hardening behavior for the rest line pipes in this study. Phase ratio, grain size and dislocation density, precipitation, texture, etc. have an effect to the strain hardening behavior of pipeline steel.


1990 ◽  
Vol 46 (8) ◽  
pp. 311-317
Author(s):  
Toshiyasu Kinari ◽  
Akihiro Hojo ◽  
Sukenori Shintaku ◽  
Nobuo Iwaki

Sign in / Sign up

Export Citation Format

Share Document