Finite Element Analysis of Interface Cracks Using Multiple Point Constraints

2006 ◽  
Vol 41 (4) ◽  
pp. 311-321
Author(s):  
C H Liu ◽  
Jui-Hsiang Lin

A finite element technique to analyse closed-mode interface cracks is proposed in this study. Stress boundary conditions for a closed-tip model are transformed into multiple point constraints (MPCs) for nodal displacements. These constraints are imposed upon the finite element solutions to simulate closed-tip stress fields in crack-tip elements. This technique can deal with small as well as large crack-tip contact zones, and no special elements other than the standard quarter-point elements are needed. Since stresses approach infinity at the crack tip in a quarter-point element, dominant terms are used in deriving MPCs for nodal displacements. Fracture parameters are obtained by using the virtual crack extension method, and numerical results are in good agreement with analytical results.

2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2011 ◽  
Vol 52-54 ◽  
pp. 43-48 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This paper presents a non-linear numerical investigation of surface cracks in round bars under bending moment by using ANSYS finite element analysis (FEA). Due to the symmetrical analysis, only quarter finite element (FE) model was constructed and special attention was given at the crack tip of the cracks. The surface cracks were characterized by the dimensionless crack aspect ratio, a/b = 0.6, 0.8, 1.0 and 1.2, while the dimensionless relative crack depth, a/D = 0.1, 0.2 and 0.3. The square-root singularity of stresses and strains was modeled by shifting the mid-point nodes to the quarter-point locations close to the crack tip. The proposed model was validated with the existing model before any further analysis. The elastic-plastic analysis under remotely applied bending moment was assumed to follow the Ramberg-Osgood relation with n = 5 and 10. J values were determined for all positions along the crack front and then, the limit load was predicted using the J values obtained from FEA through the reference stress method.


Author(s):  
Elias Ledesma ◽  
Eduardo Aguilera ◽  
Gilberto Villalobos

An experimental study and a numerical simulation of friction stir welding (FSW) process on aluminum 6064 plates is presented. The numerical analysis is performed using finite element technique with LsDyna software and the Aleatory Lagrangian Eulerian (ALE) formulation. Input parameters on the FEM are the mechanical properties of the aluminum 6064 as workpiece and H13 steel properties as the tool. The finite element analysis results shown Von Mises stresses and plastic strain developed during the process. An experimental analysis was conducted with the variation of process parameters and the specimens obtained were evaluated by x-ray inspection, tensile tests, and hardness measurements.


2008 ◽  
Vol 77 (17) ◽  
Author(s):  
T. Fett ◽  
G. Rizzi ◽  
D. Creek ◽  
S. Wagner ◽  
J. P. Guin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document