scholarly journals Distributed-element Preisach model for hysteresis of shape memory alloys

Author(s):  
C Song ◽  
J A Brandon ◽  
C A Featherston

The paper describes the development of distributed-element models for non-linear hysteresis in materials and structures. The physical model is based on an approach that views the system as comprising a series of ideal elastoplastic elements. Parameter identification, numerical simulation and inversion of the model through the application of the Preisach model for hysteresis are discussed. Experimentally obtained data using Nitinol are compared with the model prediction, thus establishing the effectiveness of distributed-element Preisach elements for predicting complex hysteresis effects including high-order hysteresis transition curves.

2016 ◽  
Vol 248 ◽  
pp. 227-234
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Janusz Kowal

Shape Memory Alloy is a material used to designing actuators. These actuators have many advantages. They are light, strong and silent. They are building in laboratory and tested because beside advantages they have disadvantages too. SMA actuators have nonlinear characteristics with hysteresis loop.In the first part of the paper Shape Memory Alloys are shortly described. Next mathematical model was formulated. In the paper the Preisach model was developed. Discrete form of the model was considered and implemented. After parameter identification model was implemented in LabView. Tests of the model were conducted and results were worked. Obtained characteristics of the SMA actuator are shown in the paper. At the end of the paper the conclusions were formulated.


2017 ◽  
Vol 48 (1) ◽  
pp. 322-332 ◽  
Author(s):  
Ch Cherif ◽  
R Hickmann ◽  
A Nocke ◽  
R Fleischhauer ◽  
M Kaliske ◽  
...  

Fiber-reinforced composites are currently being used in a wide range of lightweight constructions. Function integration, in particular, offers possibilities to develop new, innovative products for a variety of applications. The large amount of experimental testing required to investigate these novel material combinations often hinders their use in industrial applications. This paper presents an approach that allows the layout of adaptive, fiber-reinforced composites by the use of numerical simulation. In order to model the adaptive characteristics of this functional composite with textile-integrated shape memory alloys, a thermo-elastic simulation is considered by using the Finite Element method. For the numerical simulation, the parameters of the raw materials are identified and used to generate the model. The results of this simulation are validated through deflection measurements with a specimen consisting of a glass fiber fabric with structurally integrated shape memory alloys and an elastomeric matrix system. The achieved experimental and numerical results demonstrate the promising potential of adaptive, fiber-reinforced composites with large deformation capabilities.


2008 ◽  
Vol 1090 ◽  
Author(s):  
Markus Chmielus ◽  
David Carpenter ◽  
Alan Geleynse ◽  
Michael Hagler ◽  
Rainer Schneider ◽  
...  

AbstractTwin boundary motion is the mechanism that drives the plastic deformation in magnetic shape memory alloys (MSMAs), and is largely dependent on the twin microstructure of the MSMA. The twin microstructure is established during the martensitic transformation, and can be influenced through thermo-magneto-mechanical training. For self-accommodated and ineffectively trained martensite, twin thickness and magnetic-field-induced strain (MFIS) are very small. For effectively trained crystals, a single crystallographic domain may comprise the entire sample and MFIS reaches the theoretical limit. In this paper, a numerical simulation is presented describing the twin microstructures and twin boundary motion of self-accommodated martensite using disclinations and disconnections (twinning dislocations). Disclinations are line defects such as dislocations, however with a rotational displacement field. A quadrupole solution was chosen to approximate the defect structure where two quadrupoles represent an elementary twin double layer unit. In the simulation, the twin boundary was inclined to the twinning plane which required the introduction of twinning disconnections, which are line defects with a stress field similar to dislocations. The shear stress - shear strain properties of self-accommodated martensite were analyzed numerically for different initial configurations of the twin boundary (i.e. for different initial positions of the disconnections). The shear stress - shear strain curve was found to be sensitive to the initial configuration of disconnections. If the disconnections are very close to boundaries of hierarchically higher twins – such as is the case for self-accommodated martensite, there is a threshold stress for twin-boundary motion. If the disconnections are spread out along the twin boundary, twinning occurs at much lower stress.


Author(s):  
Srikrishna Doraiswamy ◽  
Mrinal Iyer ◽  
Arun R. Srinivasa ◽  
Srinivasan M. Sivakumar

Shape Memory Alloys are increasingly being used in aeronautic [1], vibration control and seismic applications [2–6]. These applications require models that faithfully represent the full thermomechanical response of SMA wires but which at the same time are simple and fast to implement. In this paper we present a model for the superelastic behavior of Shape Memory Alloys that combines a thermodynamical framework with a Preisach model. This approach allows us to easily account for both stress and strain controlled responses as well as changes in termperature in a simple and straightforward way.


Sign in / Sign up

Export Citation Format

Share Document