Computation of aerodynamic noise of centrifugal fan using large eddy simulation approach, acoustic analogy, and vortex sound theory

Author(s):  
Q Liu ◽  
D Qi ◽  
H Tang

Large eddy simulation is applied to solve the unsteady three-dimensional viscous flow in the whole impeller-volute configuration of a centrifugal fan. The results of the simulation are used to predict the impeller-volute interaction and to obtain the unsteady pressure, velocity, and vorticity fluctuations in the impeller and volute casing. The simulation at the design point is carried out with the wall-adapting local eddy-viscosity subgrid-scale model and a sliding mesh technique is applied to consider the impeller-volute interaction. The results show that a strongly unsteady flow field occurs in the impeller and volute casing of the fan, and the flow is characterized with obvious pressure and vorticity fluctuations, especially at the tongue and at the blade wake region. The large pressure fluctuation at the tongue and the large fluctuation of the blade wake vorticity appear as the blade wake is passing the tongue. Acoustic analogy and vortex sound theory are used to compute the radiated dipole and quadrupole sound fields, which are in good agreement with the experiment. The sound results show that the vortex sound theory is convenient for the broadband noise computation, and the dipole sound is much higher than the quadrupole sound. The dipoles, distributed over the volute tongue surface, are the dominant sound source of the fan.

2005 ◽  
Vol 4 (1-2) ◽  
pp. 93-115 ◽  
Author(s):  
Jérôme Boudet ◽  
Nathalie Grosjean ◽  
Marc C. Jacob

A large-eddy simulation is carried out on a rod-airfoil configuration and compared to an accompanying experiment as well as to a RANS computation. A NACA0012 airfoil (chord c = 0.1 m) is located one chord downstream of a circular rod (diameter d = c/10, Red = 48 000). The computed interaction of the resulting sub-critical vortex street with the airfoil is assessed using averaged quantities, aerodynamic spectra and proper orthogonal decomposition (POD) of the instantaneous flow fields. Snapshots of the flow field are compared to particle image velocimetry (PIV) data. The acoustic far field is predicted using the Ffowcs Williams & Hawkings acoustic analogy, and compared to the experimental far field spectra. The large-eddy simulation is shown to accurately represent the deterministic pattern of the vortex shedding that is described by POD modes 1 & 2 and the resulting tonal noise also compares favourably to measurements. Furthermore higher order POD modes that are found in the PIV data are well predicted by the computation. The broadband content of the aerodynamic and the acoustic fields is consequently well predicted over a large range of frequencies ([0 kHz; 10 kHz]).


Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 207-239
Author(s):  
Saman Salehian ◽  
Reda R Mankbadi

The focus of this work is on understanding the effect of water injection from the launch pad on the noise generated during rocket’s lift-off. To simplify the problem, we consider a supersonic jet impinging on a flat plate with water injection from the impingement plate. The Volume of Fluid model is adopted in this work to simulate the two-phase flow. A Hybrid Large Eddy Simulation – Unsteady Reynolds Averaged Simulation approach is employed to model turbulence, wherein Unsteady Reynolds Averaged Simulation is used near the walls, and Large Eddy Simulation is used elsewhere in the computational domain. The numerical issues associated with simulating the noise of two-phase supersonic flow are addressed. The pressure fluctuations on the impingement plate obtained from numerical simulations agree well with the experimental data. Furthermore, the predicted effect of water injection on the far-field broadband noise is consistent with that of the experiment. The possible mechanisms for noise reduction by water injection are discussed.


Sign in / Sign up

Export Citation Format

Share Document