Non-linear dynamic analysis of bearing—rotor system lubricating with couple stress fluid

Author(s):  
C-W Chang-Jian ◽  
C-K Chen

The current study performs a dynamic analysis of a rotor supported by two couple stress fluid film journal bearings with non-linear suspension. The dynamics of the rotor centre and bearing centre are studied. The analysis of the rotor—bearing system is investigated under the assumptions of a couple-stress lubricant and a short journal bearing approximation. The displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The analysis methods employed in this study include the dynamic trajectories of the rotor centre and the bearing centre, Poincaré maps, and bifurcation diagrams. The Lyapunov exponent analysis is also used to identify the onset of chaotic motion. Numerical results show that the stability of the system varies with the non-dimensional speed ratios. Specifically, it is found that the system is quasi-periodic at a small speed ratio ( s = 0.5). At speed ratios of s = 0.6–0.7, the system is periodic. At s = 0.8–1.9, the system is quasi-periodic, but the system is periodic at s = 2.0–2.6. However, the system exhibits chaotic motion at the speed ratios s = 2.7–2.74. At the speed ratios s = 2.75–3.16, the system becomes periodic. At s = 3.17–3.30, the system is unstable. The Poincaré map has a particular form at s = 3.17, indicative of a chaotic motion. At s = 3.31–6.0, the system finally becomes periodic. The results also confirm that the stability of the system varies with the non-dimensional speed ratios s and l∗. The results of this study allow suitable system parameters to be defined such that undesirable behaviour of the rotor centre can be avoided and the bearing system life extended as a result.

2012 ◽  
Vol 2012 ◽  
pp. 1-20
Author(s):  
Cai-Wan Chang-Jian ◽  
Shiuh Ming Chang ◽  
Hsieh-Chung Hsu

A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, couple-stress fluid flow effect, nonlinear oil-film force, and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotational speed ratio as a control parameter. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gear-bearing system. The numerical results reveal that the system exhibits a diverse range of periodic, subharmonic, quasiperiodic, and chaotic behaviors. The couple-stress fluid would be a useful lubricating fluid to suppress nonlinear dynamic responses and improve the steady of the systems. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


Author(s):  
C-W Chang-Jian

A systematic analysis of the dynamic behaviours of a gear pair system based on a rotor—bearing system under strongly non-linear effects (i.e. non-linear suspension effect, non-linear oil-film force, non-linear rub-impact force, and non-linear gear mesh force) is presented in this study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless unbalance coefficient, the dimensionless damping coefficient, and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is specified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents, and fractal dimension of the system. There exists various forms of periodic, quasi-periodic, and chaotic motions at different bifurcation parameters. The simulation results also found that highly non-periodic motions do exist in gear—rotor—bearing systems under those non-linear effects. The results presented in this study provide a better understanding of the operating conditions under which undesirable dynamic motion takes place in a gear—bearing system; they would therefore serve as a useful source of reference for engineers in designing and controlling such systems.


Sign in / Sign up

Export Citation Format

Share Document