Effect of viscosity variation on the squeeze film performance of a narrow hydrodynamic journal bearing operating with couple stress fluids

Author(s):  
G Jaya Chandra Reddy ◽  
C Eswara Reddy ◽  
K Rama Krishna Prasad
2019 ◽  
Vol 10 (6) ◽  
pp. 825-837
Author(s):  
Mushrek A. Mahdi ◽  
Ahmed Waleed Hussein

Purpose The purpose of this paper is to investigate the combined effect of wear and turbulence on the performance of a hydrodynamic journal bearing operating under Newtonian and couple stress fluids (CSF). Design/methodology/approach The analysis consists of a modified Reynolds equation of incompressible thin viscous films, and the film thickness model taking into account the wear effect. The governing equation was solved numerically using the finite difference approach. Findings The effect of both the wear parameter and the local Reynolds number on the performance characteristics of bearing has been presented and discussed. The obtained results observed that the characteristics of the intact and worn bearing in turbulent and laminar have been enhanced due to the non-Newtonian fluid (CSF) effect. Also, the results display that bearing worn and the turbulent regime cannot be neglected in calculating the performance characteristics of the bearing lubricated with Newtonian and non-Newtonian fluids. The results achieved from this study, specify that the bearing characteristics are significantly affected by these effects. Originality/value The paper investigates the behavior of hydrodynamic bearings considering different aspects simultaneously is interesting, and the application meets the current needs of improvement in modeling hydrodynamic bearings under different conditions.


Author(s):  
H Aminkhani ◽  
M Daliri

The paper shows the combined effects of couple stress fluids and lubricant viscosity variation with pressure in squeeze film performance of parallel triangular plates. By solving Reynolds equation and using perturbation method, the pressure distribution is obtained with consideration of viscosity variation with pressure. Also, with integrating pressure in the film region, load-carrying capacity is derived. A fourth-order Rang–Kutta is used to solve the nonlinear differential equation between lubricant film thickness and time. Various cases of couple stress, iso-viscous and piezo-viscous contributions are analyzed. According to the results, it is found that using couple stress fluid as a lubricant and considering viscosity–pressure dependency will increase characteristics of the squeeze film such as load-carrying capacity, pressure distribution, and triangular plates moving time, significantly as compared to the classical Newtonian iso-viscous lubricant.


2001 ◽  
Vol 34 (11) ◽  
pp. 739-747 ◽  
Author(s):  
N.B. Naduvinamani ◽  
P.S. Hiremath ◽  
G. Gurubasavaraj

Author(s):  
N. B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
P. S. Hiremath

In this paper, the squeeze-film lubrication theory between two isotropic porous rectangular plates has been advanced to analyse the effects of couple stresses arising due to the presence of microstructure additives in the lubricant, using the Stokes theory of couple-stress fluids. The most general form of the modified Reynolds equation is derived for the squeeze-film lubrication of the porous rectangular plates by taking into account of the velocity slip at the porous interface. An eigentype of expression is obtained for the squeeze-film pressure. The effects of the isotropic permeability, the couple stresses and the velocity slip parameters on the characteristics of the squeeze-film lubrication are discussed. A significant increase in the load-carrying capacity and the delayed squeeze-film time are observed for the couple-stress fluids in comparison with Newtonian fluids.


Sign in / Sign up

Export Citation Format

Share Document