Effects of piezo-viscous–coupled stress lubricant on the squeeze film performance of parallel triangular plates

Author(s):  
H Aminkhani ◽  
M Daliri

The paper shows the combined effects of couple stress fluids and lubricant viscosity variation with pressure in squeeze film performance of parallel triangular plates. By solving Reynolds equation and using perturbation method, the pressure distribution is obtained with consideration of viscosity variation with pressure. Also, with integrating pressure in the film region, load-carrying capacity is derived. A fourth-order Rang–Kutta is used to solve the nonlinear differential equation between lubricant film thickness and time. Various cases of couple stress, iso-viscous and piezo-viscous contributions are analyzed. According to the results, it is found that using couple stress fluid as a lubricant and considering viscosity–pressure dependency will increase characteristics of the squeeze film such as load-carrying capacity, pressure distribution, and triangular plates moving time, significantly as compared to the classical Newtonian iso-viscous lubricant.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Neminath Bhujappa Naduvinamani ◽  
Siddangouda Apparao ◽  
Ayyappa G. Hiremath

Combined effects of surface roughness and viscosity-pressure dependency on the couple stress squeeze film characteristics of parallel circular plates are presented. On the basis of Christensen’s stochastic theory, two types of one-dimensional roughness structures, namely, the radial roughness and azimuthal roughness patterns, are considered and the stochastic modified Reynolds equation for these two types of roughness patterns is derived for Stokes couple stress fluid by taking into account variation of viscosity with pressure. The standard perturbation technique is employed to solve the averaged Reynolds equation and closed form expressions for the mean fluid film pressure, load carrying capacity, and squeeze film time are obtained. It is found that the effects of couple stresses and viscosity-pressure dependency are to increase the load carrying capacity, and squeeze film time for both types of roughness patterns. The effect of azimuthal (radial) roughness pattern is to increase (decrease) these squeeze film characteristics as compared to the corresponding smooth case.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
M. Daliri ◽  
D. Jalali-Vahid

This study presents combined effects of couple stress fluids and rotational inertia together with considering lubricant viscosity variation with pressure in squeeze film characteristics of parallel annular plates. Squeeze film characteristics are obtained by combined solution of modified Reynolds equation and Stoke's microcontinuum for couple stress fluids with consideration of viscosity variation with pressure. Various cases of couple stress, inertial, and noninertial characteristics with isoviscous and piezoviscous contributions are investigated. The pressure distribution and load-carrying capacity for lubricant film are obtained in a closed form, using a small perturbation method. Furthermore, numerical solution of the film height versus response time is calculated employing the fourth-order Runge–Kutta method. The result shows that the combined effects of couple stresses and viscosity–pressure dependency improve the load-carrying capacity and lengthen the response time, as compared to the classical Newtonian lubricant with constant viscosity. However, increasing rotational inertia parameter decreases squeeze film characteristics.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Vimala Manivasakan ◽  
Govindarajan Sumathi

A theoretical investigation of the laminar squeeze flow of a couple-stress fluid between a flat circular static disk and an axisymmetric curved circular moving disk has been carried out using modified lubrication theory and microcontinuum theory. The combined effects of fluid inertia forces, curvature of the disk and non-Newtonian couple stresses on the squeeze film behavior are investigated analytically. Each of these effects and their combinations show a significant enhancement in the squeeze film behavior, and these are studied through their effects on the squeeze film pressure and the load carrying capacity of the fluid film as a function of time. Two different forms of the gapwidth between the disks have been considered, and the results have been shown to be in good agreement with the existing literature.


Author(s):  
Pentyala Srinivasa Rao ◽  
Amit Kumar Rahul

In this study, the effect of viscosity variation of non-Newtonian lubrication on squeeze film characteristics with porous and Rabinowitsch fluid for conical bearings is analyzed. The modified Reynolds equation representing the characteristics of non-Newtonian fluid with viscosity variation on the porous wall followed by the cubic stress law condition is invoked. For lubricant flow in a bearing clearance and in a porous layer Morgan–Cameron approximation is considered. A small perturbation technique is used to compute the pressure generation using modified Reynolds equation of lubrication. Approximate analytical solutions have been obtained for the squeeze film pressure, load-carrying capacity, squeeze film time, and center of pressure. The outcomes are displayed in diagrams and tables, which show that the effect of viscosity variation and porous wall on the squeeze film lubrication of conical bearings decreases film pressure, load-carrying capacity, and response time for the Newtonian case in comparison to the non-Newtonian case.


2017 ◽  
Vol 46 (1) ◽  
pp. 1-8
Author(s):  
Vishwanath B. Awati ◽  
Ashwini Kengangutti ◽  
Mahesh Kumar N.

The paper presents, the multigrid method for the solution of combined effect of surface roughness and viscosity variation on the squeeze film lubrication of a short journal bearing operating with micropolar fluid. The modified Reynolds equation which incorporates the variation of viscosity in micropolar fluid is analysed using Multigrid method. The governing modified Reynolds equation is solved numerically for the fluid film pressure and bearing characteristics viz. load carrying capacity and squeeze time. The analysis of the results predicts that, the viscosity variation factor decreases the load carrying capacity and squeeze film time, resulting into a longer bearing life. The results are compared with the corresponding analytical solutions.


1970 ◽  
Vol 92 (4) ◽  
pp. 593-596 ◽  
Author(s):  
Hai Wu

An analysis is made of the squeeze-film behavior between two annular disks when one disk has a porous facing. The problem is solved analytically. Results are presented for pressure distribution, load-carrying capacity, and film thickness as functions of time.


2016 ◽  
Vol 10 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Anna Walicka ◽  
Edward Walicki

Abstract In the paper the influence of both bearing surfaces roughness and porosity of one bearing surface on the pressure distribution and load-carrying capacity of a thrust bearing surfaces is discussed. The equations of motion of a pseudo-plastic fluid of Rotem-Shinnar, are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of squeeze film bearing and externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing with squeezed film is considered as a numerical example.


1972 ◽  
Vol 94 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Hai Wu

The squeeze film between two rectangular plates when one has a porous facing is studied theoretically. The problem is described by the modified Reynolds equation in the film region and the Laplace equation in the porous region. Results are presented for pressure distribution, load-carrying capacity, and film thickness as functions of time in series form. The effect of the porous facing on the squeeze film behavior is discussed and found to be important.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Akbar Toloian ◽  
Maghsood Daliri ◽  
Nader Javani

The present study aims at investigating a couple stress ferrofluid lubricant effects on the performance of the squeezed film when a uniform external magnetic field is applied. For this purpose, Shliomis ferrohydrodynamic and couple stress fluid models are employed. The considered geometry is parallel triangular plates. The effects of couple stress, volume concentration, and Langevin parameters on squeeze film characteristics including time vs. height relationship and load-carrying capacity are investigated. According to the results, employing couple stress ferrofluid lubricant in the presence of the magnetic field leads to an increased performance of the squeeze film.


Sign in / Sign up

Export Citation Format

Share Document