On Large Deflection of Symmetric Composite Plates under Static Loading

Author(s):  
M Gorji

The effect of transverse shear deformation on bending of elastic symmetric laminated composite plates undergoing large deformation (in the Von Karman sense) is considered in the present paper. The non-linear terms of the lateral displacement are considered as an additional set of lateral loads acting on the plate. The solution of a Von Karman type plate is therefore reduced to that of an equivalent plate with small displacements. This method offers an alternative technique for obtaining non-linear solutions to plate problems. The solutions of a number of example problems indicate that the non-linear shear deformation theory results, as expected, in higher values of the lateral displacement than the non-linear solutions from the classical plate theory. The difference in the values of the maximum displacement from both solutions, however, remains essentially constant beyond a certain value of the load. It is also noted that the linear and non-linear solutions deviate at a low value of w/h (w = maximum lateral displacement, h = thickness). Consequently, the extent of w/h within which the small deflection theory is applicable to composite plates is much lower than the value of 0.4 typically used for isotropic plates and depends, in general, upon lamination geometry and the degree of anisotropy.

2002 ◽  
Vol 02 (02) ◽  
pp. 163-184 ◽  
Author(s):  
A. CHAKRABARTI ◽  
A. H. SHEIKH

A triangular element based on Reddy's higher order shear deformation theory is developed for free vibration analysis of composite plates. In the Reddy's plate theory, the transverse shear stress varies in a parabolic manner across the plate thickness and vanishes at the top and bottom surfaces of the plate. Moreover, it does not involve any additional unknowns. Thus the plate theory is quite simple and elegant. Unfortunately, such an attractive plate theory cannot be exploited as expected in finite element analysis, primarily due to the difficulties in satisfying the inter-element continuity requirement. This has inspired us to develop the present element, which has three corner nodes and three mid-side nodes with the same number of degrees of freedom. To demonstrate the performance of the element, numerical examples of isotropic and composite plates under different situations are solved. The results are compared with the analytical solutions and other published results, which show the accuracy and range of applicability of the proposed element in the problem of vibration analysis.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350062 ◽  
Author(s):  
MOHAMED ATIF BENATTA ◽  
ABDELHAKIM KACI ◽  
ABDELOUAHED TOUNSI ◽  
MOHAMMED SID AHMED HOUARI ◽  
KARIMA BAKHTI ◽  
...  

The novelty of this paper is the use of four variable refined plate theory for nonlinear analysis of plates made of functionally graded materials. The plates are subjected to pressure loading and their geometric nonlinearity is introduced in the strain–displacement equations based on Von–Karman assumptions. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The fundamental equations for functionally graded plates are obtained using the Von–Karman theory for large deflection and the solution is obtained by minimization of the total potential energy. Numerical results for functionally graded plates are given in dimensionless graphical forms; and the effects of material properties on deflections and stresses are determined. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the CPT, but are almost comparable to those obtained using higher order theories having more number of unknown functions.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2154
Author(s):  
Zbigniew Kolakowski ◽  
Jacek Jankowski

Bending and membrane components of transverse forces in a fixed square isotropic plate under simultaneous compression and transverse loading were established within the first-order shear deformation theory (FSDT), the simple first-order shear deformation theory (S-FSDT), and the classical plate theory (CPT). Special attention was drawn to the fact that bending components were accompanied by transverse deformations, whereas membrane components were not, i.e., the plate was transversely perfectly rigid. In the FSDT and the S-FSDT, double assumptions concerning transverse deformations in the plate hold. A new formulation of the differential equation of equilibrium with respect to the transverse direction of the plate, using a variational approach, was proposed. For nonlinear problems in the mechanics of thin-walled plates, a range where membrane components should be considered in total transverse forces was determined. It is of particular significance as far as modern composite structures are concerned.


2014 ◽  
Vol 36 (4) ◽  
pp. 267-281
Author(s):  
Lieu B. Nguyen ◽  
Chien H. Thai ◽  
Ngon T. Dang ◽  
H. Nguyen-Xuan

We further study isogeometric approach for response analysis of laminated composite plates using the higher-order shear deformation theory. The present theory is derived from the classical plate theory (CPT) and the shear stress free surface conditions are naturally satisfied. Therefore, shear correction factors are not required. Galerkin weak form of response analysis model for laminated composite plates is used to obtain the discrete system of equations. It can be solved by isogeometric approach based on the non-uniform rational B-splines (NURBS) basic functions. Some numerical examples of the laminated composite plates under various dynamic loads, fiber orientations and lay-up numbers are provided. The accuracy and reliability of the proposed method is verified by comparing with analytical solutions, numerical solutions and results from Ansys software.


2008 ◽  
Vol 30 (4) ◽  
Author(s):  
Tran Ich Thinh ◽  
Ngo Nhu Khoa ◽  
Do Tien Dung

A new \(C^1\) rectangular element is proposed and the finite element formulation based on Reddy’s higher-order shear deformation plate theory is developed. Although the plate theory is quite attractive but it could not be exploited as expected in finite-element analysis. This is due to the difficulties associated with satisfaction of inter-elemental continuity requirement and satisfy zero shear stress boundary conditions of the plate theory. In this paper, the proposed element is developed where Reddy’s plate theory is successfully implemented. It has nine nodes and each node contains 7 degrees of freedom. The performance of the element is tested with different numerical examples, which show its precision and range of applicability.


2007 ◽  
Vol 29 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Ngo Nhu Khoa ◽  
Tran Ich Thinh

A rectangular non-conforming element based on Reddy's higher-order shear deformation plate theory is developed. Although the plate theory is quite attractive but it could not be exploited as expected in finite-element analysis. This is due to the difficulties associated with satisfaction of inter-elemental continuity requirement and satisfy zero shear stress boundary conditions of the plate theory. In this paper, the proposed element is developed where Reddy's plate theory is successfully implemented. It has four nodes and each node contains 7 degrees of freedom. The performance of the element is tested with different numerical examples, which show its precision and range of applicability.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5262
Author(s):  
Zbigniew Kołakowski ◽  
Jacek Jankowski

For an isotropic square plate subject to unidirectional compression in the postbuckling state, components of transverse forces in bending, membrane transverse components and total components of transverse forces were determined within the first-order shear deformation theory (FSDT), the simple first-order shear deformation theory (S-FSDT), the classical plate theory (CPT) and the finite element method (FEM). Special attention was drawn to membrane components of transverse forces, which are expressed with the same formulas for the first three theories and do not depend on membrane deformations. These components are nonlinearly dependent on the plate deflection. The magnitudes of components of transverse forces for the four theories under consideration were compared.


2018 ◽  
Vol 55 ◽  
pp. 42-56 ◽  
Author(s):  
Belkacem Kadari ◽  
Aicha Bessaim ◽  
Abdelouahed Tounsi ◽  
Houari Heireche ◽  
Abdelmoumen Anis Bousahla ◽  
...  

This work presents the buckling investigation of embedded orthotropic nanoplates by using a new hyperbolic plate theory and nonlocal small-scale effects. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modeled with only three unknowns and three governing equation as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal differential constitutive relations of Eringen is employed to investigate effects of small scale on buckling of the rectangular nanoplate. The elastic foundation is modeled as two-parameter Pasternak foundation. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns. Keywords: Buckling; orthotropic nanoplates; a simple 3-unknown theory; nonlocal elasticity theory; Pasternak’s foundations. * Corresponding author; [email protected]


Author(s):  
Ali Reza Saidi ◽  
Shahab Sahraee

In this paper, axisymmetric bending and stretching of functionally graded solid circular and annular plate is studied based on the second-order shear deformation plate theory (SST). The solutions for deflections, force and moment resultants of the second-order theory are presented in terms of the corresponding quantities of the isotropic plates based on the classical plate theory from which one can easily obtain the SST solutions for axisymmetric bending of functionally graded circular plates. It is assumed that the mechanical properties of the functionally graded plates vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents. Numerical results for maximum displacement are presented for various percentages of ceramic-metal volume-fractions and have been compared with those obtained from first-order shear deformation plate theory (FST).


Sign in / Sign up

Export Citation Format

Share Document