scholarly journals Effects of Putative Hydroxylated Thalidomide Metabolites on Blood Vessel Density in the Chorioallantoic Membrane (CAM) Assay and on Tumor and Endothelial Cell Proliferation

2002 ◽  
Vol 25 (5) ◽  
pp. 597-604 ◽  
Author(s):  
Megan G. Marks ◽  
Jiandong Shi ◽  
Michael O. Fry ◽  
Zili Xiao ◽  
Michelle Trzyna ◽  
...  
2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Junyu Chen ◽  
Luciana Lippo ◽  
Rossella Labella ◽  
Sin Lih Tan ◽  
Brian D Marsden ◽  
...  

2005 ◽  
Vol 93 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Serafim Kiriakidis ◽  
Oliver Högemeier ◽  
Susanne Starcke ◽  
Frank Dombrowski ◽  
Jens Claus Hahne ◽  
...  

Anti-angiogenic strategies are emerging as an important tool for the treatment of cancer and inflammatory diseases. In the present investigation we isolated several isoflavones from a tempeh (fermented soyabean) extract. The isolated isoflavones were identified as 5,7,4′-trihydroxyisoflavone (genistein), 7,4′-dihydroxyisoflavone (daidzein), 6,7,4′-trihydroxyisoflavone (factor 2), 7,8,4′-trihydroxyisoflavone (7,8,4′-TriOH) and 5,7,3′,4′-tetrahydroxyisoflavone (orobol). The effects on angiogenesis of these isoflavones were evaluated in the chicken chorioallantoic membrane assay; their capacity to inhibit vascular endothelial growth factor-induced endothelial cell proliferation and expression of the Ets 1 transcription factor, known to be implicated in the regulation of new blood vessel formation, were also investigated. We found that all isoflavones inhibited angiogenesis, albeit with different potencies. Compared with negative controls, which slightly inhibited in vivo angiogenesis by 6·30 %, genistein reduced angiogensis by 75·09 %, followed by orobol (67·96 %), factor 2 (56·77 %), daidzein (48·98 %) and 7,8,4′-TriOH (24·42 %). These compounds also inhibited endothelial cell proliferation, with orobol causing the greatest inhibition at lower concentrations. The isoflavones also inhibited Ets 1 expression, providing some insight into the molecular mechanisms of their action. Furthermore, the chemical structure of the different isoflavones suggests a structure–activity relationship. Our present findings suggest that the new isoflavones might be added to the list of low molecular mass therapeutic agents for the inhibition of angiogenesis.


2017 ◽  
Vol 5 (24) ◽  
pp. 4660-4672 ◽  
Author(s):  
Robin Augustine ◽  
Susheel Kumar Nethi ◽  
Nandakumar Kalarikkal ◽  
Sabu Thomas ◽  
Chitta Ranjan Patra

PCL-EHNs scaffolds enhance endothelial cell proliferation, adhesion and blood vessel formation in a VEGFR2/Akt dependent signaling cascade.


1982 ◽  
Vol 79 (5) ◽  
pp. 269-276 ◽  
Author(s):  
Richard A.F. Clark ◽  
Patricia DellaPelle ◽  
Eleanor Manseau ◽  
Joan M. Lanigan ◽  
Harold F. Dvorak ◽  
...  

2009 ◽  
Vol 185 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mark Winderlich ◽  
Linda Keller ◽  
Giuseppe Cagna ◽  
Andre Broermann ◽  
Olena Kamenyeva ◽  
...  

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti–VE-PTP antibodies trigger endocytosis and selectively affect Tie-2–associated, but not VE-cadherin–associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.


Sign in / Sign up

Export Citation Format

Share Document