INFLUENCES OF HYPOXIA ON HISTOCHEMICAL PROPERTIES OF THE SOLEUS MUSCLE FIBERS AND MOTOR NEURONS IN RAT

1980 ◽  
Vol 21 (Supplement) ◽  
pp. S62
Author(s):  
S. Taguchi ◽  
K. Itoh ◽  
M. Roh ◽  
Y. Hata ◽  
T. Moritani ◽  
...  
1989 ◽  
Vol 21 (Supplement) ◽  
pp. S62
Author(s):  
S. Taguchi ◽  
K. Itoh ◽  
M. Roh ◽  
Y. Hata ◽  
T. Moritani ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


2018 ◽  
Author(s):  
Mohsen Afshar Bakooshli ◽  
Ethan S Lippmann ◽  
Ben Mulcahy ◽  
Nisha R Iyer ◽  
Christine T Nguyen ◽  
...  

SummaryTwo-dimensional (2D) human skeletal muscle fiber cultures are ill equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections within two weeks. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium transient imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-culture. This demonstrates that the 3D co-culture system supports a developmental shift from the embryonic to adult form of the receptor that does not occur in 2D co-culture. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. This work delivers a simple, reproducible, and adaptable method to model and evaluate adult human NMJ de novo development and disease in culture.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuo Wang ◽  
Bonnie Seaberg ◽  
Ximena Paez-Colasante ◽  
Mendell Rimer

Abstract To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.


1996 ◽  
Vol 81 (6) ◽  
pp. 2540-2546 ◽  
Author(s):  
Robert J. Talmadge ◽  
Roland R. Roy ◽  
V. Reggie Edgerton

Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl. Physiol. 81(6): 2540–2546, 1996.—The effects of 14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044) on myosin heavy chain (MHC) isoform content of the rat soleus muscle and single muscle fibers were determined. On the basis of electrophoretic analyses, there was a de novo synthesis of type IIx MHC but no change in either type I or IIa MHC isoform proportions after either SF or HS compared with controls. The percentage of fibers containing only type I MHC decreased by 26 and 23%, and the percentage of fibers with multiple MHCs increased from 6% in controls to 32% in HS and 34% in SF rats. Type IIx MHC was always found in combination with another MHC or combination of MHCs; i.e., no fibers contained type IIx MHC exclusively. These data suggest that the expression of the normal complement of MHC isoforms in the adult rat soleus muscle is dependent, in part, on normal weight bearing and that the absence of weight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.


2015 ◽  
Vol 309 (1) ◽  
pp. H1-H8 ◽  
Author(s):  
Shawn B. Bender ◽  
M. Harold Laughlin

Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.


1997 ◽  
Vol 272 (5) ◽  
pp. C1420-C1428 ◽  
Author(s):  
A. Nori ◽  
K. A. Nadalini ◽  
A. Martini ◽  
R. Rizzuto ◽  
A. Villa ◽  
...  

Calsequestrin (CS) is the junctional sarcoplasmic reticulum (jSR) Ca2+ binding protein responsible for intraluminal Ca2+ storage. The targeting mechanisms of CS to the jSR are yet to be unraveled. The nine-amino acid epitope of the influenza virus hemoagglutinin (referred to as HA1) was added at the COOH-terminal of CS by polymerase chain reaction cloning. The HA1-tagged CS cDNA was transiently transfected in either HeLa cells, myogenic cell lines, such as C2 and L8 cells, myoblasts of rat skeletal muscle primary cultures, or regenerating soleus muscle fibers of adult rats. The expression and intracellular localization of chimeric CS-HA1 were monitored by epifluorescence and confocal microscopy using either anti-CS antibodies or anti-HA1 antibodies. About 30% of transfected HeLa cells and 20-40% of myogenic cells expressed CS-HA1 into intracellular compartments, such as the perinuclear cisternae of endoplasmic reticulum (ER). Myoblasts of newborn rat skeletal muscles were first transfected and subsequently stimulated to differentiate into myotubes. CS-HA1 was detected in approximately 20% of transfected myotubes and did not affect CS distribution in myotubes. In the soleus muscle of adult rat, intramuscular injection of bupivacaine induced necrosis followed by regeneration. In vivo transfection of HA1-tagged CS cDNA in regenerating skeletal muscles determined expression in a few skeletal muscle fibers; CS-HA1 was localized only in jSR, as judged by confocal microscopy of longitudinal sections. The present results show that chimeric CS-HA1 is correctly sorted to ER/SR compartments and that the free COOH-terminal is not requested for sorting, retention, and segregation of CS to the SR.


Sign in / Sign up

Export Citation Format

Share Document