Effect of exercise on oxygen consumption, heart rate, and the electrocardiogram of pigs

1984 ◽  
Vol 16 (4) ◽  
pp. 406???410 ◽  
Author(s):  
FRANK M. FARACI ◽  
STEVEN C. OLSEN ◽  
HOWARD H. ERICKSON
Author(s):  
Yu.G. Solonin ◽  
T.P. Loginova ◽  
I.O. Garnov ◽  
A.L. Markov ◽  
A.A. Chernykh ◽  
...  

The aim of the study is to examine the impact of training status on ski racers (Komi Republic) at rest and under bicycle ergometry evaluating their cardiorespiratory system parameters. Materials and Methods. The authors examined male ski racers with different training status: 22 first-rank sportsmen, 22 candidates for Master of Sports and 22 Masters of Sports. Athletes underwent bicycle ergometry loads up to refusal. Oxycon Pro system (Germany) was used. Then authors studied the complex of cardiorespiratory parameters, calculating maximum oxygen consumption and unit physiological cost. Results. At rest and under standard physical load (200 W) Masters of Sports demonstrate significantly increased training status among ski racers in such cardiorespiratory system parameters as heart rate, rate pressure product and oxygen pulse. Under standard physical load (200 W) statistically significant differences between first-rank sportsmen and candidates for Master of Sports are detected by heart rate, rate pressure product, respiration rate, respiratory minute volume and oxygen utilization coefficient. Such deviations indicate differences in training status. Under maximum load, the highest training status is found in Masters of Sports: bicycle ergometry load power and duration; unit pulse, pressor and cardiac cost, bulk and unit values of maximum oxygen consumption. Heart rate values, unit pulse and heart-vent cost indicate a high training status in candidates for Master of Sports under load up to refusal, if compared with first-rank sportsmen. Athletes’ organism under load up to refusal works more efficiently than under moderate load (200 W). The training status in ski racers (Komi Republic) is manifested in the saving cardiorespiratory system functions, both at rest and under standard bicycle ergometry, as well as in parameters of unit physiological cost under loads up to refusal and increased values of maximum oxygen consumption. Keywords: ski racers, Komi Republic, training status, bicycle ergometry loads, cardiorespiratory system, maximum oxygen consumption.


2014 ◽  
Vol 46 ◽  
pp. 169-170
Author(s):  
Roger L. Sacks ◽  
Barry Franklin ◽  
Judy Boura ◽  
James Van Loon

1982 ◽  
Vol 242 (5) ◽  
pp. H805-H809 ◽  
Author(s):  
G. R. Heyndrickx ◽  
P. Muylaert ◽  
J. L. Pannier

alpha-Adrenergic control of the oxygen delivery to the myocardium during exercise was investigated in eight conscious dogs instrumented for chronic measurements of coronary blood flow, left ventricular (LV) pressure, aortic blood pressure, and heart rate and sampling of arterial and coronary sinus blood. After alpha-adrenergic receptor blockade a standard exercise load elicited a significantly greater increase in heart rate, rate of change of LV pressure (LV dP/dt), LV dP/dt/P, and coronary blood flow than was elicited in the unblocked state. In contrast to the response pattern during control exercise, there was no significant change in coronary sinus oxygen tension (PO2), myocardial arteriovenous oxygen difference, and myocardial oxygen delivery-to-oxygen consumption ratio. It is concluded that the normal relationship between myocardial oxygen supply and oxygen demand is modified during exercise after alpha-adrenergic blockade, whereby oxygen delivery is better matched to oxygen consumption. These results indicate that the increase in coronary blood flow and oxygen delivery to the myocardium during normal exercise is limited by alpha-adrenergic vasoconstriction.


1957 ◽  
Vol 190 (3) ◽  
pp. 425-428 ◽  
Author(s):  
Richard M. Hoar ◽  
William C. Young

Oxygen consumption and heart rate during pregnancy were measured in untreated, thyroxin-injected and thyroidectomized guinea pigs given I131. From impregnation until parturition, oxygen consumption increased 7.9% in untreated females. The increase continued until 5 days postpartum when a sharp decrease occurred. The increase is not accounted for by growth of the fetal mass. Comparable increases occurred in thyroxin-injected (16.2%) and thyroidectomized (11.9%) females, although the levels throughout were higher and lower, respectively, than in intact females. Heart rate did not increase. On the contrary, statistically significant decreases occurred in the untreated and thyroxin-injected females. Although the mechanism associated with the increased metabolic rate is not known, the possibility of thyroid participation would seem to be excluded. Involvement of the adrenal cortex is suggested by morphological differences in the cells of the zona fasciculata in pregnant and nonpregnant females and by evidence cited from other studies.


Ergonomics ◽  
1989 ◽  
Vol 32 (2) ◽  
pp. 141-148 ◽  
Author(s):  
S. MAAS ◽  
M. L. J. KOK ◽  
H. G. WESTRA ◽  
H. C G. KEMPER

2017 ◽  
Vol 12 (4) ◽  
pp. 504-513 ◽  
Author(s):  
Charles-Mathieu Lachaume ◽  
François Trudeau ◽  
Jean Lemoyne

The purpose of this study was to investigate the energy expenditure and heart rate responses elicited in elite male midget ice hockey players during small-sided games. Nine players (aged 15.89 ± 0.33 years) participated in the study. Maximal progressive treadmill testing in the laboratory measured the relationship of oxygen consumption ([Formula: see text]) to heart rate before on-ice assessments of heart rate during six different small-sided games: 1v1, 2v2, 2v2 with support player, 3v3 with support player, 3v3 with transitions, and 4v4 with two support players. Heart rate was recorded continuously in each game. 3v3 T small-sided game was the most intense for all four intensity markers. All six small-sided games reached 89% HRmax or more with heart rate peaks in active effort repetition. These findings demonstrate that such small-sided games are considered as high intensity games and are an effective training method for ice hockey players.


Sign in / Sign up

Export Citation Format

Share Document