INFLUENCE OF EXERCISE INTENSITY AND TRAINING STATUS ON SKIN BLOOD FLOW AND CORE TEMPERATURE

1995 ◽  
Vol 27 (Supplement) ◽  
pp. S200
Author(s):  
Ricardo G. Fritzsche ◽  
Edward F. Coyle
1985 ◽  
Vol 58 (1) ◽  
pp. 4-13 ◽  
Author(s):  
G. K. Savard ◽  
K. E. Cooper ◽  
W. L. Veale ◽  
T. J. Malkinson

During the initial stages of rewarming from hypothermia, there is a continued cooling of the core, or after-drop in temperature, that has been attributed to the return of cold blood due to peripheral vasodilatation, thus causing a further decrease of deep body temperature. To examine this possibility more carefully, subjects were immersed in cold water (17 degrees C), and then rewarmed from a mildly hypothermic state in a warm bath (40 degrees C). Measurements of hand blood flow were made by calorimetry and of forearm, calf, and foot blood flows by straingauge venous occlusion plethysmography at rest (Ta = 22 degrees C) and during rewarming. There was a small increase in skin blood flow during the falling phase of core temperature upon rewarming in the warm bath, but none in foot blood flow upon rewarming at room air, suggesting that skin blood flow seems to contribute to the after-drop, but only minimally. Limb blood flow changes during this phase suggest that a small muscle blood flow could also have contributed to the after-drop. It was concluded that the after-drop of core temperature during rewarming from mild hypothermia does not result from a large vasodilatation in the superficial parts of the periphery, as postulated. The possible contribution of mechanisms of heat conduction, heat convection, and cessation of shivering thermogenesis were discussed.


1998 ◽  
Vol 85 (1) ◽  
pp. 301-309 ◽  
Author(s):  
Martha E. Heath

The purpose of this study was to characterize neuropeptide Y (NPY)-induced vasodilation in the rat tail. Sterile surgical technique was used (with pentobarbital sodium anesthesia) to equip rats with a jugular catheter and a blind-ended thermocouple reentrant tube next to the carotid artery. Tail skin and core temperature were measured with thermocouples during experiments. Tail skin blood flow was monitored with a laser Doppler flowmeter, and tail total blood flow and volume were measured with plethysmography. After baseline data were collected, saline, NPY (16, 32, 64, and 128 μg/kg), [Leu31Pro34]NPY (63.25 μg/kg), or NPY[13–36] (44.7 μg/kg) was administered intravenously. Tail total blood flow, volume, and tail skin temperature increased, whereas tail skin blood flow and core temperature decreased in response to both NPY- and the Y1-receptor agonist [Leu31Pro34]NPY but not in response to saline or NPY[13–36]. Studies conducted with the use of color microspheres demonstrated that arteriovenous anastomoses are involved in this NPY-induced vasodilation.


1994 ◽  
Vol 44 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Yoshifumi YASUDA ◽  
Makoto YOSHIZAWA ◽  
Hitoo NISHINO

2013 ◽  
Vol 45 (4) ◽  
pp. 674-682 ◽  
Author(s):  
REBECCA S. BRUNING ◽  
JESSICA D. DAHMUS ◽  
W. LARRY KENNEY ◽  
LACY M. ALEXANDER

2012 ◽  
Vol 302 (5) ◽  
pp. R634-R642 ◽  
Author(s):  
Aaron G. Lynn ◽  
Daniel Gagnon ◽  
Konrad Binder ◽  
Robert C. Boushel ◽  
Glen P. Kenny

Plasma hyperosmolality and baroreceptor unloading have been shown to independently influence the heat loss responses of sweating and cutaneous vasodilation. However, their combined effects remain unresolved. On four separate occasions, eight males were passively heated with a liquid-conditioned suit to 1.0°C above baseline core temperature during a resting isosmotic state (infusion of 0.9% NaCl saline) with (LBNP) and without (CON) application of lower-body negative pressure (−40 cmH2O) and during a hyperosmotic state (infusion of 3.0% NaCl saline) with (LBNP + HYP) and without (HYP) application of lower-body negative pressure. Forearm sweat rate (ventilated capsule) and skin blood flow (laser-Doppler), as well as core (esophageal) and mean skin temperatures, were measured continuously. Plasma osmolality increased by ∼10 mosmol/kgH2O during HYP and HYP + LBNP conditions, whereas it remained unchanged during CON and LBNP ( P ≤ 0.05). The change in mean body temperature (0.8 × core temperature + 0.2 × mean skin temperature) at the onset threshold for increases in cutaneous vascular conductance (CVC) was significantly greater during LBNP (0.56 ± 0.24°C) and HYP (0.69 ± 0.36°C) conditions compared with CON (0.28 ± 0.23°C, P ≤ 0.05). Additionally, the onset threshold for CVC during LBNP + HYP (0.88 ± 0.33°C) was significantly greater than CON and LBNP conditions ( P ≤ 0.05). In contrast, onset thresholds for sweating were not different during LBNP (0.50 ± 0.18°C) compared with CON (0.46 ± 0.26°C, P = 0.950) but were elevated ( P ≤ 0.05) similarly during HYP (0.91 ± 0.37°C) and LBNP + HYP (0.94 ± 0.40°C). Our findings show an additive effect of hyperosmolality and baroreceptor unloading on the onset threshold for increases in CVC during whole body heat stress. In contrast, the onset threshold for sweating during heat stress was only elevated by hyperosmolality with no effect of the baroreflex.


1974 ◽  
Vol 36 (6) ◽  
pp. 726-733 ◽  
Author(s):  
C R Wyss ◽  
G L Brengelmann ◽  
J M Johnson ◽  
L B Rowell ◽  
M Niederberger

2005 ◽  
Vol 30 (5) ◽  
pp. 554-575 ◽  
Author(s):  
Dennis W. Koch ◽  
Sean C. Newcomer ◽  
David N. Proctor

Understanding the effects of physiological aging on blood flow to active skeletal muscle and its regulation during exercise has important functional, hemodynamic, and metabolic implications for our rapidly expanding elderly population. During peak exercise involving a large muscle mass, blood flow to the legs is lower in healthy older compared to younger persons; this results from central (reduced cardiac output) and peripheral (reduced leg vascular conductance) limitations. There is considerable variability in the literature concerning age-related changes in leg blood flow during submaximal exercise, with reports of similar or reduced leg blood flaw and vascular conductance in older vs. younger subjects depending on the exercise intensity and the gender and training status of the subjects. However, all the studies involving non-endurance-trained subjects are consistent in that older subjects achieve the requisite leg blood flow at higher arterial perfusion pressures than young subjects, suggesting altered local vasoregulatory mechanisms with aging. Although the nature of these age- related alterations is poorly understood, we have preliminary evidence for augmented sympathetic vasoconstrictor responsiveness in the legs of older men during exercise, and blunted leg vasodilator responsiveness in older women. Systematic research will be needed in order to define the central and local mechanisms underlying these age- and gender-specific differences in muscle vascular responsiveness. Such information will be important for designing future interventions aimed at improving muscle blood supply and functional capacity in older persons. Key words: exercise, vascular responsiveness, human


Sign in / Sign up

Export Citation Format

Share Document