Blood Flow to Exercising Limbs Varies With Age, Gender, and Training Status

2005 ◽  
Vol 30 (5) ◽  
pp. 554-575 ◽  
Author(s):  
Dennis W. Koch ◽  
Sean C. Newcomer ◽  
David N. Proctor

Understanding the effects of physiological aging on blood flow to active skeletal muscle and its regulation during exercise has important functional, hemodynamic, and metabolic implications for our rapidly expanding elderly population. During peak exercise involving a large muscle mass, blood flow to the legs is lower in healthy older compared to younger persons; this results from central (reduced cardiac output) and peripheral (reduced leg vascular conductance) limitations. There is considerable variability in the literature concerning age-related changes in leg blood flow during submaximal exercise, with reports of similar or reduced leg blood flaw and vascular conductance in older vs. younger subjects depending on the exercise intensity and the gender and training status of the subjects. However, all the studies involving non-endurance-trained subjects are consistent in that older subjects achieve the requisite leg blood flow at higher arterial perfusion pressures than young subjects, suggesting altered local vasoregulatory mechanisms with aging. Although the nature of these age- related alterations is poorly understood, we have preliminary evidence for augmented sympathetic vasoconstrictor responsiveness in the legs of older men during exercise, and blunted leg vasodilator responsiveness in older women. Systematic research will be needed in order to define the central and local mechanisms underlying these age- and gender-specific differences in muscle vascular responsiveness. Such information will be important for designing future interventions aimed at improving muscle blood supply and functional capacity in older persons. Key words: exercise, vascular responsiveness, human

2005 ◽  
Vol 99 (4) ◽  
pp. 1384-1390 ◽  
Author(s):  
Motohiko Miyachi ◽  
Hirofumi Tanaka ◽  
Hiroshi Kawano ◽  
Mayumi Okajima ◽  
Izumi Tabata

Reductions in basal leg blood flow have been implicated in the pathogenesis of metabolic syndrome and functional impairment in humans. We tested the hypothesis that reductions in basal whole leg blood flow with age are either absent or attenuated in those who perform regular strength training. A total of 104 normotensive men aged 20–34 yr (young) and 35–65 yr (middle aged), who were either sedentary or resistance trained, were studied. Mean and diastolic blood pressures were higher ( P < 0.05–0.001) in the middle-aged compared with the young men, but there were no significant differences between the sedentary and resistance-trained groups. In the sedentary group, basal whole leg blood flow (duplex Doppler ultrasound) and vascular conductance were lower (∼30 and ∼38%, respectively; P < 0.01) in the middle-aged compared with the young men. There were no such age-related differences in the resistance-trained group. In the young men, basal whole leg blood flow and vascular conductance were not different between the two activity groups, but, in the middle-aged men, they were higher (∼35 and ∼36%, respectively; P < 0.01) in the resistance-trained men than in the sedentary men. When blood flow and vascular conductance were expressed relative to the leg muscle mass, the results were essentially the same. We concluded that the age-related reduction in basal whole leg blood flow is absent in resistance-trained men. These results suggest that resistance training may favorably influence leg perfusion in aging humans, independent of its impact on leg muscle mass.


2012 ◽  
Vol 112 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Bethan Phillips ◽  
John Williams ◽  
Philip Atherton ◽  
Kenneth Smith ◽  
Wulf Hildebrandt ◽  
...  

One manifestation of age-related declines in vascular function is reduced peripheral (limb) blood flow and vascular conduction at rest and in response to vasodilatory stimuli such as exercise and feeding. Since, even in older age, resistance exercise training (RET) represents an efficacious strategy for increasing muscle mass and function, we hypothesized that likewise RET would improve age-related declines in leg blood flow (LBF) and vascular conductance (LVC). We studied three mixed-sex age groups (young: 18–28 yr, n = 14; middle aged: 45–55 yr, n = 20; older: 65–75 yr, n = 17) before and after 20 wk of whole body RET in the postabsorptive state (BASAL) and after unilateral leg extensions (6 × 8 repetitions; 75% 1 repetition maximum) followed by intermittent mixed-nutrient liquid feeds (∼6.5 kJ·kg−1·30 min−1), which allowed us to discern the acute effects of feeding (nonexercised leg; FED) and exercise plus feeding (exercised leg; FEDEX) on vascular function. We measured LBF using Doppler ultrasound and recorded mean arterial pressure (MAP) to calculate LVC. Our results reveal that although neither age nor RET influenced BASAL LBF, age-related declines in LBF responses to FED were eradicated by RET. Moreover, increases in LBF after FEDEX, which occurred only in young and middle-aged groups before RET (+73 ± 9%, and +90 ± 13%, P < 0.001, respectively), increased in all groups after RET (young +78 ± 10%, middle-aged +96 ± 15%, older +80 ± 19%, P < 0.001). Finally, RET robustly improved LVC under FASTED, FED, and FEDEX conditions in the older group. These data provide novel information that supports the premise that RET represents a valuable strategy to counter age-related impairments in LBF/LVC.


2019 ◽  
Vol 126 (6) ◽  
pp. 1525-1532 ◽  
Author(s):  
Jay R. Hydren ◽  
Ryan M. Broxterman ◽  
Joel D. Trinity ◽  
Jayson R. Gifford ◽  
Oh Sung Kwon ◽  
...  

Continuous passive leg movement (PLM) is a promising clinical assessment of the age-related decline in peripheral vascular function. To further refine PLM, this study evaluated the efficacy of a single PLM (sPLM), a simplified variant of the more established continuous movement approach, to delineate between healthy young and old men based on vascular function. Twelve young (26 ± 5 yr) and 12 old (70 ± 7 yr) subjects underwent sPLM (a single passive flexion and extension of the knee joint through 90°), with leg blood flow (LBF, common femoral artery with Doppler ultrasound), blood pressure (finger photoplethysmography), and leg vascular conductance (LVC) assessed. A receiver operator characteristic curve analysis was used to determine an age-specific cut score, and a factor analysis was performed to assess covariance. Baseline LBF and LVC were not different between groups ( P = 0.6). The high level of covariance and similar predictive value for all PLM-induced LBF and LVC responses indicates LBF, alone, can act as a surrogate variable in this paradigm. The peak sPLM-induced increase in LBF from baseline was attenuated in the old (Young: 717 ± 227, Old: 260 ± 97 ml/min, P < 0.001; cut score: 372 ml/min), as was the total LBF response (Young: 155 ± 67, Old: 26 ± 17 ml, P < 0.001; cut score: 58 ml). sPLM, a simplified version of PLM, exhibits the prerequisite qualities of a valid screening test for peripheral vascular dysfunction, as evidenced by an age-related attenuation in the peripheral hyperemic response and a clearly delineated age-specific cut score. NEW & NOTEWORTHY Single passive leg movement (sPLM) exhibits the prerequisite qualities of a valid screening test for peripheral vascular dysfunction. sPLM displayed an age-related reduction in the peripheral hemodynamic response for amplitude, duration, initial rate of change, and total change with clearly delineated age-specific cut scores. sPLM has a strong candidate variable that is a simple single numeric value, for which to appraise peripheral vascular function, the 45-s hyperemic response (leg blood flow area under the curve: 45 s).


2007 ◽  
Vol 293 (5) ◽  
pp. H2928-H2936 ◽  
Author(s):  
Kathryn L. Walker ◽  
Natasha R. Saunders ◽  
Dennis Jensen ◽  
Jennifer L. Kuk ◽  
Suzi-Lai Wong ◽  
...  

We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden ∼30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBFrelax). In an AH-to-BH transition, FBFrelax increased immediately, in excess of the increase in FAPP (∼69% vs. ∼41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVCrelax) increased by ∼19%]. FVCrelax was restored by the second relaxation. Continued slow decreases in FVCrelax stabilized by 2 min without restoring FBFrelax. In a BH-to-AH transition, FBFrelax decreased immediately, in excess of the decrease in FAPP (∼37% vs. ∼29%). FVCrelax decreased by ∼14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVCrelax was similar to that in the AH-to-BH transition, and FBFrelax was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.


2007 ◽  
Vol 112 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Jan T. Groothuis ◽  
Nynke van Dijk ◽  
Walter ter Woerds ◽  
Wouter Wieling ◽  
Maria T. E. Hopman

In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical counter-manoeuvres are well documented, not much is known about the peripheral haemodynamic events. Therefore the purpose of the present study was to examine the peripheral haemodynamic effects of leg crossing combined with muscle tensing during 70° head-up tilt. Healthy subjects (n=13) were monitored for 10 min in the supine position followed by 10 min in 70° head-up tilt and, finally, for 2 min of leg crossing with muscle tensing in 70° head-up tilt. MAP (mean arterial BP), heart rate, stroke volume, cardiac output and total peripheral resistance were measured continuously by Portapres. Leg blood flow was measured using Doppler ultrasound. Leg vascular conductance was calculated as leg blood flow/MAP. A significant increase in MAP (13 mmHg), stroke volume (27%) and cardiac output (18%), a significant decrease in heart rate (−5 beats/min) and no change in total peripheral resistance during the physical counter-manoeuvre were observed when compared with baseline 70° head-up tilt. A significant increase in leg blood flow (325 ml/min) and leg vascular conductance (2.9 arbitrary units) were seen during the physical counter-manoeuvre when compared with baseline 70° head-up tilt. In conclusion, the present study indicates that the physical counter-manoeuvre of leg crossing combined with muscle tensing clearly enhances leg blood flow and, at the same time, elevates MAP.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Kristen Lynn Jablonski ◽  
Iratxe Eskurza ◽  
Kevin D Monahan ◽  
Douglas R Seals ◽  
Anthony J Donato

2007 ◽  
Vol 102 (3) ◽  
pp. 890-895 ◽  
Author(s):  
Kerrie L. Moreau ◽  
Ashley R. DePaulis ◽  
Kathleen M. Gavin ◽  
Douglas R. Seals

Basal whole leg blood flow and vascular conductance are reduced in estrogen-deficient postmenopausal compared with premenopausal women. The underlying mechanisms are unknown, but oxidative stress could be involved. We studied 9 premenopausal [23 ± 1 yr (mean ± SE)] and 20 estrogen-deficient postmenopausal (55 ± 1 yr) healthy women. During baseline control, oxidized low-density lipoprotein (LDL), a marker of oxidative stress, was 50% greater in the postmenopausal women ( P < 0.001). Basal whole leg blood flow (duplex ultrasound of femoral artery) was 34% lower in the postmenopausal women because of a 38% lower leg vascular conductance ( P < 0.0001); mean arterial pressure was not different. Intravenous administration of a supraphysiological dose of the antioxidant ascorbic acid increased leg blood flow by 15% in the postmenopausal women as a result of an increase in leg vascular conductance (both P < 0.001), but it did not affect leg blood flow in premenopausal controls or mean arterial pressure in either group. In the pooled subjects, the changes in leg blood flow and leg vascular conductance with ascorbic acid were related to baseline plasma oxidized LDL ( r = 0.46 and 0.53, P < 0.01) and waist-to-hip ratio and total body fat ( r = 0.41–0.44, all P < 0.05). Our results are consistent with the hypothesis that oxidative stress contributes to chronic leg vasoconstriction and reduced basal whole leg blood flow in estrogen-deficient postmenopausal women. This oxidative stress-related suppression of leg vascular conductance and blood flow may be linked in part to increased total and abdominal adiposity.


Sign in / Sign up

Export Citation Format

Share Document