Effects Of Caffeine On Resistance Exercise Performance, Mood, Heart Rate, And Rating Of Perceived Exertion

2010 ◽  
Vol 42 ◽  
pp. 443-444
Author(s):  
Edward Jo ◽  
Michael Martinez ◽  
Brown E. Lee ◽  
Jared W. Coburn ◽  
Biagini Matthew ◽  
...  
2018 ◽  
Vol 13 (5) ◽  
pp. 804-809 ◽  
Author(s):  
Luciana S Decimoni ◽  
Victor M Curty ◽  
Livia Almeida ◽  
Alexander J Koch ◽  
Jeffrey M Willardson ◽  
...  

We investigated the effect of carbohydrate mouth rinsing on resistance exercise performance. Fifteen recreationally trained women (age 26 ± 4 y; height 1.61.9 ± 5.1 m; weight 59.5 ± 8.2 kg) completed two resistance exercise bouts consisting of three sets of five exercises (half-squat, leg press, bench press, military press, and seated row) to volitional fatigue with a 10 repetition-maximum load. Immediately prior to and during the middle of each exercise bout, subjects mouth rinsed for 10 s with 100 mL of either a 6% maltodextrin solution (CHO) or an artificially flavored solution (PLA) in a randomized, double-blind, counterbalanced fashion. Heart rate and perceived exertion were compared between conditions using a 2 (conditions) × 15 (time points) repeated measures ANOVA. Significant main effects were further analyzed using pairwise comparisons with Bonferroni post hoc tests. Total volume (exercises * sets * repetitions * load) between sessions was compared with a Student’s t-test. Statistical significance was set at p ≤ 0.05 level of confidence. The CHO resulted in more repetitions performed during half-squat, bench press, military press, and seated row, for a significantly greater (∼12%) total volume load lifted versus PLA ( p = 0.039, ES: 0.49). Rating of perceived exertion was also significantly lower in the CHO versus PLA ( p = 0.020, ES: 0.28). These data indicate that CHO mouth rinsing can enhance high-volume resistance exercise performance and lower ratings of perceived exertion.


Author(s):  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Matthew J. McAllister ◽  
JohnEric W. Smith

Carbohydrate mouth rinsing has been shown to enhance aerobic exercise performance, but there is limited research with resistance exercise (RE). Therefore, the purpose of this investigation was to examine the effects of carbohydrate mouth rinsing during a high-volume upper body RE protocol on performance, heart rate responses, ratings of perceived exertion, and felt arousal. Recreationally experienced resistance-trained males (N = 17, age: 21 ± 1 years, height: 177.3 ± 5.2 cm, mass: 83.5 ± 9.3 kg) completed three experimental sessions, with the first serving as familiarization to the RE protocol. During the final two trials, the participants rinsed a 25-ml solution containing either a 6% carbohydrate solution or an artificially flavored placebo in a randomized, counterbalanced, and double-blinded fashion. The participants rinsed a total of nine times immediately before beginning the protocol and 20 s before repetitions to failure with the exercises bench press, bent-over row, incline bench press, close-grip row, hammer curls, skull crushers (all completed at 70% one-repetition maximum), push-ups, and pull-ups. Heart rate, ratings of perceived exertion, and felt arousal were measured at the baseline and immediately after each set of repetitions to failure. There were no differences for the total repetitions completed (carbohydrate = 203 ± 25 repetitions vs. placebo = 201 ± 23 repetitions, p = .46, Cohen’s d = 0.10). No treatment differences were observed for heart rate, ratings of perceived exertion, or felt arousal (p > .05). Although carbohydrate mouth rinsing has been shown to be effective in increasing aerobic performance, the results from this investigation show no benefit in RE performance in resistance-trained males.


2019 ◽  
Vol 5 (1) ◽  
pp. e000560 ◽  
Author(s):  
Noah Marc Adrian d'Unienville ◽  
Alison Hill ◽  
Alison Coates ◽  
Catherine Yandell ◽  
Max Nelson ◽  
...  

BackgroundFoods rich in nutrients, such as nitrate, nitrite, L-arginine and polyphenols, can promote the synthesis of nitric oxide (NO), which may induce ergogenic effects on endurance exercise performance. Thus, consuming foods rich in these components, such as almonds, dried grapes and dried cranberries (AGC), may improve athletic performance. Additionally, the antioxidant properties of these foods may reduce oxidative damage induced by intense exercise, thus improving recovery and reducing fatigue from strenuous physical training. Improvements in NO synthesis may also promote cerebral blood flow, which may improve cognitive function.Methods and analysisNinety-six trained male cyclists or triathletes will be randomised to consume ~2550 kJ of either a mixture of AGC or a comparator snack food (oat bar) for 4 weeks during an overreaching endurance training protocol comprised of a 2-week heavy training phase, followed by a 2-week taper. The primary outcome is endurance exercise performance (5 min time-trial performance) and secondary outcomes include markers of NO synthesis (plasma and urinary nitrites and nitrates), muscle damage (serum creatine kinase and lactate dehydrogenase), oxidative stress (F2-isoprostanes), endurance exercise function (exercise efficiency, submaximal oxygen consumption and substrate utilisation), markers of internal training load (subjective well-being, rating of perceived exertion, maximal rate of heart rate increase and peak heart rate) and psychomotor speed (choice reaction time).ConclusionThis study will evaluate whether consuming AGC improves endurance exercise performance, recovery and psychomotor speed across an endurance training programme, and evaluate the mechanisms responsible for any improvement.Trial registration numberACTRN12618000360213.


2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Arazi ◽  
Abbas Asadi ◽  
Morteza Purabed

The purpose of this study was to assess the effects of listening to music during warm-up and resistance exercise on physiological (heart rate and blood pressure) and psychophysical (rating of perceived exertion) responses in trained athletes. Twelve strength trained male participants performed warm-up and resistance exercise without music (WU+RE without M), warm-up and resistance exercise with music (WU+RE with M), WU with M and RE without M, and WU without M and RE with M, with 48 hours space between sessions. After completing each session, the rating of perceived exertion (RPE) was measured. Also, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and rate pressure product (RPP) were assessed before, after, and 15, 30, 45, and 60 min after exercise. Results indicated that RPE was higher for WU+RE without M condition in comparison with other conditions. All conditions showed increases in cardiovascular variables after exercise. The responses of HR, SBP, and RPP were higher for WU+RE without M condition. Thus, using music during warm-up and resistance exercise is a legal method for decreasing RPE and cardiovascular responses due to resistance exercise.


2019 ◽  
Vol 69 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Hanen Hafedh ◽  
Maamer Slimani ◽  
Bianca Miarka ◽  
Ramzi Bettayeb ◽  
Nicola Luigi Bragazzi

Abstract This study aimed to investigate the effects of beta2‐agonist terbutaline sulfate (TER) at a supra‐therapeutic dose (8 mg) on aerobic exercise performance. Twelve (6 females and 6 males) amateur athletes familiarized with all experimental procedures had their anthropometric data obtained on day 1. On days 2 and 3 either 8 mg of TER or a placebo (PLA) was administered orally (double‐blind manner) to participants who had rested for 3 h prior to aerobic exercise performance 20 m multistage fitness test (MSFT)]. This test was used to predict maximal oxygen uptake (VO2max) and velocity at which VO2max occurs (vVO2max). The Borg rating of perceived exertion (RPE), cardiovascular variables [heart rate (HR) and blood pressure (BP)] and blood glucose concentration [BGC] were obtained 15 min pre‐ and immediately post‐MSFT. Significant mean group differences were reported between PLA and TER groups (p < 0.05), respectively, in the RPE (15.6 ± 1.2 vs. 17.3 ± 1.5 a.u.), maximum heart rate (HRmax: 191.2 ± 7.1 vs. 197.2 ± 8.6 bpm) and BGC (118.4 ± 18.3 vs. 141.2 ± 15.8 mg/dL) post‐MSFT. The main effect of gender (male vs. female) in TER and PLA groups (p< 0.05) was observed, with higher estimated VO2max, vVO2max, HRmax and a lower mean HR pre‐test in male than female athletes. For these reasons, the inclusion of TER in the Prohibited List should be re‐discussed because of the lack of ergogenic effects.


2013 ◽  
Vol 38 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Andrew H. Hall ◽  
Michael D. Leveritt ◽  
Kiran D.K. Ahuja ◽  
Cecilia M. Shing

Researchers have focused primarily on investigating the effects of coingesting carbohydrate (CHO) and protein (PRO) during recovery and, as such, there is limited research investigating the benefits of CHO+PRO coingestion during exercise for enhancing subsequent exercise performance. The aim of this study was to investigate whether coingestion of CHO+PRO during endurance training would enhance recovery and subsequent exercise performance. Ten well-trained male cyclists (aged 29.7 ± 7.5 years; maximal oxygen uptake, 66.2 ± 6 mL·kg−1·min−1) took part in a randomized, double-blind, cross-over trial. Each trial consisted of a 2.5-h morning training bout during which the cyclists ingested a CHO+PRO or energy-matched CHO beverage followed by a 4-h recovery period and a subsequent performance time trial (total work, 7 kJ·kg−1). Blood was collected before and after exercise. Time-trial performance was 1.8% faster in the CHO+PRO trial compared with the CHO trial (p = 0.149; 95% CI, −13 to 87 s; 75.8% likelihood of benefit). The increase in myoglobin level from before the training bout to after the training bout was lower in the CHO+PRO trial (0.74 nmol·L−1; 95% CI, 0.3–1.17 nmol·L−1) compared with the CHO trial (1.16 nmol·L−1; 95% CI, 0.6–1.71 nmol·L−1) (p = 0.018). Additionally, the decrease in neutrophil count over the recovery period was greater in the CHO+PRO trial (p = 0.034), and heart rate (p < 0.022) and rating of perceived exertion (RPE) (p < 0.01) were lower during training in the CHO+PRO trial compared with the CHO trial. Ingesting PRO, in addition to CHO, during strenuous training lowered exercise stress, as indicated by reduced heart rate, RPE, and muscle damage, when compared with CHO alone. CHO+PRO ingestion during training is also likely to enhance recovery, providing a worthwhile improvement in subsequent cycling time-trial performance.


Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


Sign in / Sign up

Export Citation Format

Share Document