Effects of Preferred and Nonpreferred Warm-Up Music on Exercise Performance

2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.

2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2016 ◽  
Vol 11 (8) ◽  
pp. 1024-1028 ◽  
Author(s):  
Sam S.X. Wu ◽  
Jeremiah J. Peiffer ◽  
Peter Peeling ◽  
Jeanick Brisswalter ◽  
Wing Y. Lau ◽  
...  

Purpose:To investigate the effect of 3 swim-pacing profiles on subsequent performance during a sprint-distance triathlon (SDT). Methods:Nine competitive/trained male triathletes completed 5 experimental sessions including a graded running exhaustion test, a 750-m swim time trial (STT), and 3 SDTs. The swim times of the 3 SDTs were matched, but pacing was manipulated to induce positive (ie, speed gradually decreasing from 92% to 73% STT), negative (ie, speed gradually increasing from 73% to 92% STT), or even pacing (constant 82.5% STT). The remaining disciplines were completed at a self-selected maximal pace. Speed over the entire triathlon, power output during the cycle discipline, rating of perceived exertion (RPE) for each discipline, and heart rate during the cycle and run were determined. Results:Faster cycle and overall triathlon times were achieved with positive swim pacing (30.5 ± 1.8 and 65.9 ± 4.0 min, respectively), as compared with the even (31.4 ± 1.0 min, P = .018 and 67.7 ± 3.9 min, P = .034, effect size [ES] = 0.46, respectively) and negative (31.8 ± 1.6 min, P = .011 and 67.3 ± 3.7 min, P = .041, ES = 0.36, respectively) pacing. Positive swim pacing elicited a lower RPE (9 ± 2) than negative swim pacing (11 ± 2, P = .014). No differences were observed in the other measured variables. Conclusions:A positive swim pacing may improve overall SDT performance and should be considered by both elite and age-group athletes during racing.


2013 ◽  
Vol 38 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Andrew H. Hall ◽  
Michael D. Leveritt ◽  
Kiran D.K. Ahuja ◽  
Cecilia M. Shing

Researchers have focused primarily on investigating the effects of coingesting carbohydrate (CHO) and protein (PRO) during recovery and, as such, there is limited research investigating the benefits of CHO+PRO coingestion during exercise for enhancing subsequent exercise performance. The aim of this study was to investigate whether coingestion of CHO+PRO during endurance training would enhance recovery and subsequent exercise performance. Ten well-trained male cyclists (aged 29.7 ± 7.5 years; maximal oxygen uptake, 66.2 ± 6 mL·kg−1·min−1) took part in a randomized, double-blind, cross-over trial. Each trial consisted of a 2.5-h morning training bout during which the cyclists ingested a CHO+PRO or energy-matched CHO beverage followed by a 4-h recovery period and a subsequent performance time trial (total work, 7 kJ·kg−1). Blood was collected before and after exercise. Time-trial performance was 1.8% faster in the CHO+PRO trial compared with the CHO trial (p = 0.149; 95% CI, −13 to 87 s; 75.8% likelihood of benefit). The increase in myoglobin level from before the training bout to after the training bout was lower in the CHO+PRO trial (0.74 nmol·L−1; 95% CI, 0.3–1.17 nmol·L−1) compared with the CHO trial (1.16 nmol·L−1; 95% CI, 0.6–1.71 nmol·L−1) (p = 0.018). Additionally, the decrease in neutrophil count over the recovery period was greater in the CHO+PRO trial (p = 0.034), and heart rate (p < 0.022) and rating of perceived exertion (RPE) (p < 0.01) were lower during training in the CHO+PRO trial compared with the CHO trial. Ingesting PRO, in addition to CHO, during strenuous training lowered exercise stress, as indicated by reduced heart rate, RPE, and muscle damage, when compared with CHO alone. CHO+PRO ingestion during training is also likely to enhance recovery, providing a worthwhile improvement in subsequent cycling time-trial performance.


2012 ◽  
Vol 7 (2) ◽  
pp. 186-188 ◽  
Author(s):  
Iñigo Mujika ◽  
Rafa González de Txabarri ◽  
Sara Maldonado-Martín ◽  
David B. Pyne

The warm-up procedure in traditional rowing usually involves continuous low-intensity rowing and short bouts of intense exercise, lasting about 60 min.Purpose:To compare the effects of a traditional and an experimental 30-min warm-up of lower intensity on indoor rowing time-trial performance.Methods:Fourteen highly trained male rowers (age 25.9 ± 5.3 y, height 1.86 ± 0.06 m, mass 80.4 ± 5.2 kg, peak aerobic power 352.0 ± 24.4 W; mean ± SD) performed 2 indoor rowing trials 12 d apart. Rowers were randomly assigned to either LONG or SHORT warm-ups using a crossover design, each followed by a 10-min all-out fixed-seat rowing-ergometer time trial.Results:Mean power output during the time trial was substantially higher after SHORT (322 ± 18 vs 316 ± 17 W), with rowers generating substantially more power in the initial 7.5 min of the time trial after SHORT. LONG elicited substantially higher mean warm-up heart rate than SHORT (134 ± 11 vs 121 ± 13 beats/min), higher pre–time-trial rating of perceived exertion (10.2 ± 1.4 vs 7.6 ± 1.7) and blood lactate (1.7 ± 0.4 mM vs 1.2 ± 0.2 mM), but similar heart rate (100 ± 14 vs 102 ± 9 beats/min). No substantial differences were observed between LONG and SHORT in stroke rate (39.4 ± 2.0 vs 39.4 ± 2.2 strokes/min) or mean heart rate (171 ± 6 vs 171 ± 8 beats/min) during the time trial, nor in blood lactate after it (11.8 ± 2.5 vs 12.1 ± 2.0 mM).Conclusion:A warm-up characterized by lower intensity and shorter duration should elicit less physiological strain and promote substantially higher power production in the initial stages of a rowing time trial.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2020 ◽  
Vol 15 (3) ◽  
pp. 298-308 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Javier S. Morales ◽  
Adrián Castillo-García ◽  
Alejandro Lucia

Purpose: To determine the acute effects of ketone supplementation on exercise performance (primary outcome) and physiological and perceptual responses to exercise (secondary outcomes). Methods: A systematic search was conducted in PubMed, Web of Science, and SPORTDiscus (since inception to July 21, 2019) to find randomized controlled trials assessing the effects of acute ketone supplementation compared with a drink containing no ketones (ie, control intervention). The standardized mean difference (Hedges g) between interventions and 95% confidence interval (CI) were computed using a random-effects model. Results: Thirteen studies met all inclusion criteria. No significant differences were observed between interventions for overall exercise performance (Hedges g = −0.05; 95% CI, −0.30 to 0.20; P = .68). Subanalyses revealed no differences between interventions when analyzing endurance time-trial performance (g = −0.04; 95% CI, −0.35 to 0.28; P = .82) or when assessing the separate effects of supplements containing ketone esters (g = −0.07; 95% CI, −0.38 to 0.24; P = .66) or salts (g = −0.02; 95% CI, −0.45 to 0.41; P = .93). All studies reported increases in plasma ketone concentration after acute ketone supplementation, but no consistent effects were reported on the metabolic (plasma lactate and glucose levels), respiratory (respiratory exchange ratio, oxygen uptake, and ventilatory rate), cardiovascular (heart rate), or perceptual responses to exercise (rating of perceived exertion). Conclusions: The present findings suggest that ketone supplementation exerts no clear influence on exercise performance (from sprints to events lasting up to ∼50 min) or metabolic, respiratory, cardiovascular, or perceptual responses to exercise. More research is needed to elucidate if this strategy could provide ergogenic effects on other exercise types (eg, ultraendurance exercise).


2006 ◽  
Vol 100 (1) ◽  
pp. 194-202 ◽  
Author(s):  
L. Havemann ◽  
S. J. West ◽  
J. H. Goedecke ◽  
I. A. Macdonald ◽  
A. St Clair Gibson ◽  
...  

The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8–10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest ( P < 0.005) and during exercise ( P < 0.01) and increased plasma free fatty acid levels ( P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO ( P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower ( P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.


2010 ◽  
Vol 42 ◽  
pp. 443-444
Author(s):  
Edward Jo ◽  
Michael Martinez ◽  
Brown E. Lee ◽  
Jared W. Coburn ◽  
Biagini Matthew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document