Early-phase Adaptations Of Three Resistance-training Protocols On Muscle Strength In Untrained Young Women

2015 ◽  
Vol 47 ◽  
pp. 935
Author(s):  
Andre Martorelli ◽  
Rodrigo Celes ◽  
Saulo Martorelli ◽  
Eduardo Cadore ◽  
Pedro Henrique Lucas ◽  
...  
2018 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Bar Kohavi ◽  
Marco Beato ◽  
Lior Laver ◽  
Tomas T. Freitas ◽  
Linda H. Chung ◽  
...  

2018 ◽  
Vol 118 (9) ◽  
pp. 1831-1843 ◽  
Author(s):  
Ethan C. Hill ◽  
Terry J. Housh ◽  
Joshua L. Keller ◽  
Cory M. Smith ◽  
Richard J. Schmidt ◽  
...  

Author(s):  
Saulo Martorelli ◽  
Eduardo Lusa Cadore ◽  
Mikel Izquierdo ◽  
Rodrigo Celes ◽  
André Martorelli ◽  
...  

This study investigated the effects of a 10-week resistance training to failure on neuromuscular adaptations in young women. Eighty-nine active young women were randomly assigned to one of three groups: 1) repetitions to failure (RF; three sets of repetitions to failure); 2) repetitions not to failure with equalized volume (RNFV; four sets of 7 repetitions); and 3) repetitions not to failure (RNF; three sets of 7 repetitions). All groups performed the elbow flexor exercise (bilateral biceps curl) and trained 2 days per week using 70% of 1RM. There were significant increases (p<0.05) in muscle strength after 5 (15.9% for RF, 18.4% for RNF, and 19.9% for RNFV) and 10 (28.3% for RF, 26.8% for RNF, and 28.3% for RNFV) weeks of training, with no significant differences between groups. Additionally, muscular endurance increased after 5 and 10 weeks, with no differences between groups. However, peak torque (PT) increased significantly at 180°.s-1 in the RNFV (13.7%) and RNF (4.1%) groups (p<0.05), whereas no changes were observed in the RF group (-0.5%). Muscle thickness increased significantly (p<0.05) in the RF and RNFV groups after 5 (RF: 8.4% and RNFV: 2.3%) and 10 weeks of training (RF: 17.5%, and RNFV: 8.5%), whereas no significant changes were observed in the RNF group (3.9 and 2.1% after 5 and 10 weeks, respectively). These data suggest that short-term training of repetitions to failure do not yield additional overall neuromuscular improvements in young women.


2002 ◽  
Vol 93 (4) ◽  
pp. 1318-1326 ◽  
Author(s):  
Per Aagaard ◽  
Erik B. Simonsen ◽  
Jesper L. Andersen ◽  
Peter Magnusson ◽  
Poul Dyhre-Poulsen

The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0–200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow (“neural drive”) during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 ± 9.8 to 339.0 ± 10.2 N · m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 ± 117 to 2,020 ± 119 ( P < 0.05), 1,802 ± 121 to 2,201 ± 106 ( P < 0.01), 1,543 ± 83 to 1,806 ± 69 ( P < 0.01), and 1,141 ± 45 to 1,363 ± 44 N · m · s−1( P < 0.01), respectively. Corresponding increases were observed in contractile impulse ( P < 0.01–0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased ( P < 0.01–0.05) 22–143% (mean average voltage) and 41–106% (rate of EMG rise) in the early contraction phase (0–200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saša Đurić ◽  
Olivera M. Knezevic ◽  
Vedrana Sember ◽  
Ivan Cuk ◽  
Aleksandar Nedeljkovic ◽  
...  

The aim of this study was to investigate the resistance-specific gains in muscle power and strength (1RM) following the training of maximum bench-press throws (BPT) against constant, inertial, and combined resistance. Forty-eight male participants (age 20.5 ± 2.0 years) were randomly assigned to the constant, inertial, combined resistance, or control group. Participants underwent 8 weeks of training of BPT against the loads that corresponded to the different effects of mass of 40 kg (∼50% of 1RM). The gains in average and maximum power, and 1RM were significant in all experimental groups (P &lt; 0.01), but not in the control group (P &gt; 0.1). Relative gains in the average (26.3 ± 9.8%) and maximum power (25.2 ± 9.8%) were larger than that in the 1RM (mean 7.2 ± 6.9%; both P &lt; 0.001). The gains in the average (F4, 66 = 6.0; P &lt; 0.01) and maximum power (F4, 66 = 4.7; P &lt; 0.01) were higher when tested against the training-specific resistance than when tested against the remaining two resistance types. Differences in 1RM among experimental groups were not significant (P = 0.092). The most important and rather novel finding of the study is that the training against the weight and inertial resistance, and their combination results in resistance-specific gains in muscle power, although the overall gains muscle strength and power remain comparable across the training protocols.


2021 ◽  
pp. 026921552110034
Author(s):  
Nico Nitzsche ◽  
Alexander Stäuber ◽  
Samuel Tiede ◽  
Henry Schulz

Objective: This meta-analysis aimed to evaluate the effectiveness of low-load Resistance Training (RT) with or without Blood Flow Restriction (BFR) compared with conventional RT on muscle strength in open and closed kinetic chains, muscle volume and pain in individuals with orthopaedic impairments. Data sources: Searches were conducted in the PubMed, Web of Science, Scopus and Cochrane databases, including the reference lists of randomised controlled trials (RCT’s) up to January 2021. Review method: An independent reviewer extracted study characteristics, orthopaedic indications, exercise data and outcome measures. The primary outcome was muscle strength of the lower limb. Secondary outcomes were muscle volume and pain. Study quality and reporting was assessed using the TESTEX scale. Results: A total of 10 RCTs with 386 subjects (39.2 ± 17.1 years) were included in the analysis to compare low-load RT with BFR and high or low-load RT without BFR. The meta-analysis showed no significant superior effects of low-load resistance training with BFR regarding leg muscle strength in open and closed kinetic chains, muscle volume or pain compared with high or low-load RT without BFR in subjects with lower limb impairments. Conclusion: Low-load RT with BFR leads to changes in muscle strength, muscle volume and pain in musculoskeletal rehabilitation that are comparable to conventional RT. This appears to be independent of strength testing in open or closed kinetic chains.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicholas Tataryn ◽  
Vini Simas ◽  
Tailah Catterall ◽  
James Furness ◽  
Justin W. L. Keogh

Abstract Background While chronic exercise training has been demonstrated to be an effective non-pharmacological treatment for chronic low back pain (CLBP), there has been a relative lack of evidence or clinical guidelines for whether a posterior chain resistance training programme provides any benefits over general exercise (GE). Objectives To determine if chronic posterior chain resistance training (PCRT), defined as exercise programmes of ≥6 weeks duration focused on the thoracic, lumbar and hip extensor musculature, is more effective than GE in improving pain, level of disability, muscular strength and the number of adverse events in recreationally active and sedentary individuals with CLBP. Methods Four electronic databases were systematically searched from 25 September 2019 until 30 August 2020. Using the Joanna Briggs Institute (JBI) Critical Appraisal Tools checklist for randomized controlled trials (RCTs), articles were critically appraised and compared against the inclusion/exclusion criteria. Standardized mean difference (SMD), risk difference (RD) and confidence interval (CI) were calculated using Review Manager 5.3. Results Eight articles were included, with a total of 408 participants (203 PCRT, 205 GE). Both PCRT and GE were effective in improving a number of CLBP-related outcomes, but these effects were often significantly greater in PCRT than GE, especially with greater training durations (i.e. 12–16 weeks compared to 6–8 weeks). Specifically, when compared to GE, PCRT demonstrated a greater reduction in pain (SMD = − 0.61 (95% CI − 1.21 to 0.00), p = 0.05; I2 = 74%) and level of disability (SMD = − 0.53 (95% CI − 0.97 to − 0.09), p = 0.02; I2 = 52%), as well as a greater increase in muscle strength (SMD = 0.67 (95% CI 0.21 to 1.13), p = 0.004; I2 = 0%). No differences in the number of adverse events were reported between PCRT and GE (RD = − 0.02 (95% CI − 0.10 to 0.05), p = 0.57; I2 = 72%). Conclusion Results of the meta-analysis indicated that 12–16 weeks of PCRT had a statistically significantly greater effect than GE on pain, level of disability and muscular strength, with no significant difference in the number of adverse events for recreationally active and sedentary patients with CLBP. Clinicians should strongly consider utilizing PCRT interventions for 12–16 weeks with patients with CLBP to maximize their improvements in pain, disability and muscle strength. Future research should focus on comparing the efficacy and adverse events associated with specific PCRT exercise training and movement patterns (i.e. deadlift, hip lift) in treating this population. Trial registration PROSPERO CRD42020155700.


Sign in / Sign up

Export Citation Format

Share Document