scholarly journals Effects Of Resistance Training On Maximal Motor Unit Firing Rates In Young And Older Males

2018 ◽  
Vol 50 (5S) ◽  
pp. 429-430
Author(s):  
Phuong L. Ha ◽  
Garrett M. Hester ◽  
Ryan J. Colquhoun ◽  
Mitchel A. Magrini ◽  
Zachary K. Pope ◽  
...  
2018 ◽  
Vol 50 (5S) ◽  
pp. 567
Author(s):  
Adam J. Sterczala ◽  
Jonathan D. Miller ◽  
Mandy E. Wray ◽  
Hannah L. Dimmick ◽  
Michael A. Trevino ◽  
...  

2005 ◽  
Vol 91 (1) ◽  
pp. 171-178 ◽  
Author(s):  
A. R. Pucci ◽  
L. Griffin ◽  
E. Cafarelli

1998 ◽  
Vol 84 (1) ◽  
pp. 200-206 ◽  
Author(s):  
J. M. Jakobi ◽  
E. Cafarelli

Jakobi, J. M., and E. Cafarelli. Neuromuscular drive and force production are not altered during bilateral contractions. J. Appl. Physiol. 84(1): 200–206, 1998.—Several investigators have studied the deficit in maximal voluntary force that is said to occur when bilateral muscle groups contract simultaneously. A true bilateral deficit (BLD) would suggest a significant limitation of neuromuscular control; however, some of the data from studies in the literature are equivocal. Our purpose was to determine whether there is a BLD in the knee extensors of untrained young male subjects during isometric contractions and whether this deficit is associated with a decreased activation of the quadriceps, increased activation of the antagonist muscle, or an alteration in motor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (Δ3%) and maximal rate of force generation (Δ2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 ± 0.28 vs. 2.6 ± 0.24 mV) and coactivation (0.17 ± 0.02 vs. 0.20 ± 0.02 mV) were also not different. Similarly, the ratio of force to EMG during submaximal UL and BL contractions was not different. Analysis of force production by each leg in UL and BL conditions showed no differences in force, rate of force generation, EMG, motor unit firing rates, and coactivation. Finally, assessment of quadriceps activity with the twitch interpolation technique indicated no differences in the degree of voluntary muscle activation (UL: 93.6 ± 2.51 Hz, BL: 90.1 ± 2.43 Hz). These results provide no evidence of a significant limitation in neuromuscular control between BL and UL isometric contractions of the knee extensor muscles in young male subjects.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kohei Watanabe ◽  
Aleš Holobar ◽  
Yukiko Mita ◽  
Motoki Kouzaki ◽  
Madoka Ogawa ◽  
...  

2018 ◽  
Vol 120 (6) ◽  
pp. 3246-3256 ◽  
Author(s):  
Spencer A. Murphy ◽  
Francesco Negro ◽  
Dario Farina ◽  
Tanya Onushko ◽  
Matthew Durand ◽  
...  

Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.


2020 ◽  
Vol 238 (5) ◽  
pp. 1133-1144
Author(s):  
Mandy E. Parra ◽  
Adam J. Sterczala ◽  
Jonathan D. Miller ◽  
Michael A. Trevino ◽  
Hannah L. Dimmick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document