scholarly journals Sex-related differences in motor unit firing rates and action potential amplitudes of the first dorsal interosseous during high-, but not low-intensity contractions

2020 ◽  
Vol 238 (5) ◽  
pp. 1133-1144
Author(s):  
Mandy E. Parra ◽  
Adam J. Sterczala ◽  
Jonathan D. Miller ◽  
Michael A. Trevino ◽  
Hannah L. Dimmick ◽  
...  
Author(s):  
Tanner Micah Reece ◽  
Trent J Herda

The primary purpose of the present study is to determine if an organized control scheme exists for the antagonist muscle during steady isometric torque. A secondary focus is to better understand how firing rates of the antagonist muscle changes from a moderate- to higher-contraction intensity. Fourteen subjects performed two submaximal isometric trapezoid muscle actions of the forearm flexors that included a linearly increasing, steady force at both 40% and 70% maximum voluntary contraction, and linearly decreasing segments. Surface electromyographic signals of the biceps and triceps brachii were collected and decomposed into constituent motor unit action potential trains. Motor unit firing rate vs. recruitment threshold, motor unit action potential amplitude vs. recruitment threshold, and motor unit firing rate vs. action potential amplitude relationships of the biceps brachii (agonist) and triceps brachii (antagonist) muscles were analyzed. Moderate- to-strong relationships (|r| ³ 0.69) were present for the agonist and antagonist muscles for each relationship with no differences between muscles (p = 0.716, 0.428, 0.182). The y-intercepts of the motor unit firing rate vs. recruitment threshold relationship of the antagonist did not increase from 40% to 70% maximal voluntary contractions (p = 0.96), unlike for the agonist (p = 0.009). The antagonist muscle exhibits a similar motor unit control scheme to the agonist. Unlike the agonist, however, the firing rates of the antagonist did not increase with increasing intensity. Future research should investigate how antagonist firing rates adapt to resistance training and changes in antagonist firing rates in the absence of peripheral feedback.


2019 ◽  
Vol 119 (4) ◽  
pp. 1007-1018 ◽  
Author(s):  
Jonathan D. Miller ◽  
Adam J. Sterczala ◽  
Michael A. Trevino ◽  
Mandy E. Wray ◽  
Hannah L. Dimmick ◽  
...  

2021 ◽  
Vol 46 (1) ◽  
pp. 63-68
Author(s):  
David B. Copithorne ◽  
Kalter Hali ◽  
Charles L. Rice

Low-intensity contractions with blood flow occlusion (BFO) result in neuromuscular adaptations comparable with high-intensity (>70% maximal voluntary contraction, MVC) exercise. Because BFO exercise can only be applied to limb muscles, it is of interest to explore whether muscles proximal to the occlusion site are affected. Therefore, the purpose of this study was to assess neural activation of the tibialis anterior (TA) when flow is occluded proximal and distal to the active muscle. Five males completed three protocols to observe the effect of BFO on motor unit firing rates (MUFR) of the TA at a fatiguing contraction intensity of ∼15% MVC. Two occlusion protocols, one proximal (BFOprox) to and one distal (BFOdis) to the TA, were compared with a control (free-flow) protocol time-matched to BFOdis. MVC was significantly reduced following the BFOprox (∼41%; P < 0.001) and BFOdis (∼27%, P < 0.001), but not following the control protocol (∼15%; P = 0.13). Surface electromyography (EMG) during BFOdis and BFOprox increased ∼14% and ∼28%, respectively, but was not different among protocols. MUFRs for BFOdis and BFOprox were significantly reduced (by ∼33% and ∼23%, respectively; P < 0.01) at task failure. Results indicate that although BFOprox results in the largest reductions of MUFRs, BFOdis shows greater impairments compared with the free-flow control condition. Novelty Effects on motor unit firing rates of proximal versus distal blood flow occlusion were compared during low-intensity fatiguing task. Proximal occlusion results in greatest fatigue and reduction in motor unit rates, but distal occlusion elicits more fatigue and rate reduction than a control task.


2019 ◽  
Vol 66 ◽  
pp. 416-424 ◽  
Author(s):  
Trent J. Herda ◽  
Jonathan D. Miller ◽  
Mandy E. Wray ◽  
Adam J. Sterczala ◽  
Hannah L. Dimmick ◽  
...  

2018 ◽  
Vol 50 (5S) ◽  
pp. 8
Author(s):  
Mandy E. Wray ◽  
Adam J. Sterczala ◽  
Jonathan D. Miller ◽  
Hannah L. Dimmick ◽  
Trent J. Herda

2018 ◽  
Vol 43 (8) ◽  
pp. 759-768 ◽  
Author(s):  
Adam J. Sterczala ◽  
Jonathan D. Miller ◽  
Michael A. Trevino ◽  
Hannah L. Dimmick ◽  
Trent J. Herda

Previous investigations report no changes in motor unit (MU) firing rates during submaximal contractions following resistance training. These investigations did not account for MU recruitment or examine firing rates as a function of recruitment threshold (REC). Therefore, MU recruitment and firing rates in chronically resistance-trained (RT) and physically active controls (CON) were examined. Surface electromyography signals were collected from the first dorsal interosseous during isometric muscle actions at 40% and 70% maximal voluntary contraction (MVC). For each MU, force at REC, mean firing rate (MFR) during the steady force, and MU action potential amplitude (MUAPAMP) were analyzed. For each individual and contraction, the MFRs were linearly regressed against REC, whereas, exponential models were applied to the MFR versus MUAPAMP and MUAPAMP versus REC relationships with the y-intercepts and slopes (linear) and A and B terms (exponential) calculated. For the 40% MVC, the RT had less negative slopes (p = 0.001) and lower y-intercepts (p = 0.006) of the MFR versus REC relationships and lower B terms (p = 0.011) of the MUAPAMP versus REC relationships. There were no differences in either relationship between groups for the 70% MVC. During the 40% MVC, the RT had a smaller range of MFRs and MUAPAMPS in comparison with the CON, likely because of reduced MU recruitment. The RT had lower MFRs and recruitment during the 40% MVC, which may indicate a leftward shift in the force–frequency relationship, and thus require less excitation to the motoneuron pool to match the same relative force.


2018 ◽  
Vol 50 (5S) ◽  
pp. 429-430
Author(s):  
Phuong L. Ha ◽  
Garrett M. Hester ◽  
Ryan J. Colquhoun ◽  
Mitchel A. Magrini ◽  
Zachary K. Pope ◽  
...  

1998 ◽  
Vol 84 (1) ◽  
pp. 200-206 ◽  
Author(s):  
J. M. Jakobi ◽  
E. Cafarelli

Jakobi, J. M., and E. Cafarelli. Neuromuscular drive and force production are not altered during bilateral contractions. J. Appl. Physiol. 84(1): 200–206, 1998.—Several investigators have studied the deficit in maximal voluntary force that is said to occur when bilateral muscle groups contract simultaneously. A true bilateral deficit (BLD) would suggest a significant limitation of neuromuscular control; however, some of the data from studies in the literature are equivocal. Our purpose was to determine whether there is a BLD in the knee extensors of untrained young male subjects during isometric contractions and whether this deficit is associated with a decreased activation of the quadriceps, increased activation of the antagonist muscle, or an alteration in motor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (Δ3%) and maximal rate of force generation (Δ2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 ± 0.28 vs. 2.6 ± 0.24 mV) and coactivation (0.17 ± 0.02 vs. 0.20 ± 0.02 mV) were also not different. Similarly, the ratio of force to EMG during submaximal UL and BL contractions was not different. Analysis of force production by each leg in UL and BL conditions showed no differences in force, rate of force generation, EMG, motor unit firing rates, and coactivation. Finally, assessment of quadriceps activity with the twitch interpolation technique indicated no differences in the degree of voluntary muscle activation (UL: 93.6 ± 2.51 Hz, BL: 90.1 ± 2.43 Hz). These results provide no evidence of a significant limitation in neuromuscular control between BL and UL isometric contractions of the knee extensor muscles in young male subjects.


Sign in / Sign up

Export Citation Format

Share Document