scholarly journals The Impact Of Sleep Deprivation On Agility Performance And Pattern Recall

2020 ◽  
Vol 52 (7S) ◽  
pp. 1043-1044
Author(s):  
Carolyn Albright ◽  
Laura Lupin
2021 ◽  
Vol 70 ◽  
pp. 102989
Author(s):  
Sławomir Kujawski ◽  
Katarzyna Buszko ◽  
Agnieszka Cudnoch-Jędrzejewska ◽  
Joanna Słomko ◽  
Djordje G. Jakovljevic ◽  
...  

2006 ◽  
Vol 23 (Supplement 37) ◽  
pp. 253-254
Author(s):  
N. Karanovic ◽  
M. Carev ◽  
N. Berovic ◽  
A. Ujevic ◽  
G. Kardum ◽  
...  
Keyword(s):  

2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 246-252
Author(s):  
Devon A Hansen ◽  
Brieann C Satterfield ◽  
Matthew E Layton ◽  
Hans P A Van Dongen

ABSTRACT Introduction Military operations often involve intense exposure to stressors combined with acute sleep deprivation, while military personnel also experience high prevalence of chronic sleep deficiency from insomnia and other sleep disorders. However, the impact of acute and chronic sleep deficiency on physiologic stressor responses is poorly understood. In a controlled laboratory study with normal sleepers and individuals with chronic sleep-onset insomnia, we measured responses to an acute stressor administered in a sleep deprivation condition or a control condition. Methods Twenty-two adults (aged 22-40 years; 16 females)—11 healthy normal sleepers and 11 individuals with sleep-onset insomnia—completed a 5-day (4-night) in-laboratory study. After an adaptation day and a baseline day, subjects were assigned to a 38-hour total sleep deprivation (TSD) condition or a control condition; the study ended with a recovery day. At 8:00 PM after 36 hours awake in the sleep deprivation condition or 12 hours awake in the control condition, subjects underwent a Maastricht Acute Stress Test (MAST). Salivary cortisol was measured immediately before the MAST at 8:00 PM, every 15 minutes after the MAST from 8:15 PM until 9:15 PM, and 30 minutes later at 9:45 PM. Baseline salivary cortisol was collected in the evening of the baseline day. Additionally, before and immediately upon completion of the MAST, self-report ratings of affect and pain were collected. Results The MAST elicited a stressor response in both normal sleepers and individuals with sleep-onset insomnia, regardless of the condition, as evidenced by increases in negative affect and pain ratings. Relative to baseline, cortisol levels increased immediately following the MAST, peaked 30 minutes later, and then gradually returned to pre-MAST levels. At the cortisol peak, there was a significant difference across groups and conditions, reflecting a pronounced blunting of the cortisol response in the normal sleepers in the TSD condition and the sleep-onset insomnia group in both the TSD and control conditions. Conclusions Blunted stressor reactivity as a result of sleep deficiency, whether acute or chronic, may reflect reduced resiliency attributable to allostatic load and may put warfighters at increased risk in high-stakes, rapid response scenarios.


Author(s):  
Ying Zhao ◽  
Yan Shu ◽  
Ning Zhao ◽  
Zili Zhou ◽  
Xiong Jia ◽  
...  

Long-term sleep deprivation (SD) is a bad lifestyle habit, especially among specific occupational practitioners, characterized by circadian rhythm misalignment and abnormal sleep/wake cycles. SD is closely associated with an increased risk of metabolic disturbance, particularly obesity and insulin resistance. The incretin hormone, glucagon-like peptide-1 (GLP-1), is a critical insulin release determinant secreted by the intestinal L-cell upon food intake. Besides, the gut microbiota participates in metabolic homeostasis and regulates GLP-1 release in a circadian rhythm manner. As a commonly recognized intestinal probiotic, Bifidobacterium has various clinical indications regarding its curative effect. However, few studies have investigated the effect of Bifidobacterium supplementation on sleep disorders. In the present study, we explored the impact of long-term SD on the endocrine metabolism of rhesus monkeys and determined the effect of Bifidobacterium supplementation on the SD-induced metabolic status. Lipids concentrations, body weight, fast blood glucose, and insulin levels increased after SD. Furthermore, after two months of long-term SD, the intravenous glucose tolerance test (iVGTT) showed that the glucose metabolism was impaired and the insulin sensitivity decreased. Moreover, one month of Bifidobacterium oral administration significantly reduced blood glucose and attenuated insulin resistance in rhesus macaques. Overall, our results suggested that Bifidobacterium might be used to alleviate SD-induced aberrant glucose metabolism and improve insulin resistance. Also, it might help in better understanding the mechanisms governing the beneficial effects of Bifidobacterium.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A18-A18
Author(s):  
Sara Alger ◽  
John Hughes ◽  
Thomas Balkin ◽  
Tracy Jill Doty

Abstract Introduction Threat-related information is preferentially processed, facilitating quick and efficient responses. However, the impact of extended sleep deprivation on perception of and response to threatening information is not well known. Sleep loss may increase amygdalar activity and negative mood, potentially facilitating threat processing. However, it also reduces cognitive function, possibly impairing ability to respond. The present study assessed the extent to which extended sleep deprivation modulates threat processing using a threat expectation paradigm. Methods Twenty-one participants underwent one baseline night of sleep followed by 62hrs total sleep deprivation (TSD) and one recovery night of sleep (12hrs). Threat expectation task performance was assessed at baseline, at multiple time points during TSD, and following recovery sleep. To control for circadian influence, performance at three 1100 sessions (baseline, 52hrs into TSD, and recovery) were compared. The threat expectation task involved determining whether a presented face was fearful (i.e., signaled threat) or neutral. Faces were presented at three expectation levels: 80%, 50%, and 20% chance of viewing a fearful face. Results Overall, responses were faster (F=9.77, p=0.001) and more accurate (F=11.48, p=0.001) when the type of face (fearful or neutral) was expected. Accuracy significantly decreased over TSD (t=7.71, p<0.001) and recovered following subsequent sleep. Fear bias was calculated for accuracy (accuracy for fearful face minus neutral face). Under conditions of high expectation (80%) of viewing a fearful face, fear bias increased across TSD (t=-1.95, p=0.07). Although accuracy to both fearful and neutral faces significantly declined across TSD (both p<0.001), decline for neutral faces was greater, thus increasing fear bias. Importantly, the increased bias toward fear was still evident compared to baseline following a 12-hour recovery sleep opportunity, (t=-1.93, p=0.07). Conclusion Extended sleep deprivation, common in operational environments where there is also high expectation of encountering threat, impairs cognitive control and is thought to enhance amygdala activity. These data show that, consequently, cognitive resources become biased toward biologically adaptive behaviors (i.e., threat processing) at the expense of attending and responding more broadly to all stimuli. This behavior is not reversed with a single extended sleep opportunity. Support (if any) Department of Defense Military Operational Medicine Research Program (MOMRP)


2020 ◽  
Vol 51 (5) ◽  
pp. 341-353
Author(s):  
David L. Dickinson ◽  
Andrew R. Smith ◽  
Robert McClelland

Abstract. Many people suffer from insufficient sleep and the adverse effects of sleep deprivation are well documented. Research has shown that people’s judgments can be affected by circadian timing. Across three studies, we examined the impact of time-of-day on people’s judgments about hypothetical legal scenarios, hypothesizing that participants responding at a suboptimal time of day (3–5 a.m.) would give higher guilt ratings and be less sensitive to case information (e.g., evidence strength) than participants responding at a more optimal time of day (2–4 p.m.). Although the time-of-day manipulation influenced participants’ self-reported alertness levels, time-of-day did not affect guilt judgments or sensitivity to case information. This research adds to the literature on how extraneous factors may and may not impact probability assessments.


SLEEP ◽  
2010 ◽  
Vol 33 (8) ◽  
pp. 1086-1090 ◽  
Author(s):  
Olav Kjellevold Olsen ◽  
Ståle Pallesen ◽  
Eid Jarle

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A46-A46
Author(s):  
Anna Marie Nguyen ◽  
Rebecca Campbell ◽  
Abigail Vance ◽  
Ellen Leen-Feldner

Abstract Introduction Recent literature highlights the need to focus on the impact of intrusive symptoms as a possible risk factor for the development and maintenance of PTSD. Cognitive and sleep models also contribute to the further understanding of intrusive symptoms. Further emotion work emphasizes that disgust is an emotion closely associated with the emergence of posttraumatic stress symptomology following traumatic events. Methods This study utilized a film eliciting disgust to examine the effects of acute sleep deprivation on the intensity of intrusive symptoms and emotion reactivity. Forty-nine college students were randomly assigned to sleep as usual or an acute sleep deprivation after watching a disturbing film. It was hypothesized that, relative to the control group, participants who were acutely sleep deprived would report higher frequency of intrusive symptoms and higher negative valence. Results Findings were partially consistent with hypotheses. There were no group or interaction effects on intrusive symptoms, although participants across both groups reported significant decreases in negative valence and intrusive symptoms across the study (F(1, 47) = 10.30, p < 0.01). There was a significant interaction effect between sleep group and self-reported negative valence, where individuals in the sleep deprived group reported significantly higher valence than individuals in the control group, despite significant decreases in negative valence over time (F(1, 48) = 7.869, p < 0.01). Conclusion Possible mechanisms that may contribute to the significant difference in valence may be due to higher order emotion regulation strategies that are compromised due to sleep loss. However, the significant decreases in negative valence and intrusive symptoms over time may be due to methodological factors or the type of sleep manipulation. Further work can address these challenges by using a larger sample size or examining the effects of chronic, partial sleep deprivation. Support (if any):


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A117-A117
Author(s):  
T J Cunningham ◽  
R M Bottary ◽  
E A Kensinger ◽  
R Stickgold

Abstract Introduction The ability to perceive emotions is a socially-relevant skill critical for healthy interpersonal functioning, while deficits in this ability are associated with psychopathology. Total sleep deprivation (TSD) has been shown to have deleterious effects on emotion perception, yet the extent to which these impairments persist across the day with continued wakefulness, or if brief periods of recovery sleep can restore emotion perception abilities, remains unexplored. Methods Participants viewed slideshows of faces ranging in emotional expression and were asked to categorize (Happy, Sad, Angry, Neutral) and rate the emotional intensity (1-9) of each face at baseline (2100; Session 1), at 0900 (Session 2) following a night of sleep or TSD, and at 1400 (Session 3) following either continued wakefulness (wake group) or a 90-minute nap opportunity (nap group). Results Emotion categorization ability marginally improved from Session 1 to Session 2 following overnight sleep, however, no changes in emotion intensity ratings or vigilance were observed. TSD led to an increase in error rates during vigilance testing [t(46)=2.9, p=0.005] and impairment in emotion categorization ability [t(46)=5.5, p<0.001] from Session 1 to Session 2, although by Session 3 performance levels on both measures returned to baseline for all TSD participants. TSD also led to a decrease in emotional intensity ratings from Session 1 to Session 2, particularly for the highest tertile of emotional faces [6-9; t(46)=6.1, p<0.001]. These ratings remained suppressed at Session 3 in both the wake [t(25)=7.8, p<0.001] and nap [t(18)=3.1, p=0.006] groups. Conclusion These results indicate that time of day effects, with or without any additional benefit of a nap, can restore the impairments in vigilance and emotional categorization caused by TSD. The ability to discriminate levels of emotional intensity, however, is not restored by time of day or napping, suggesting that this ability is more sensitive to the impact of TSD. Support  


2019 ◽  
Vol 20 (13) ◽  
pp. 3273 ◽  
Author(s):  
Zdenka Kristofikova ◽  
Jana Sirova ◽  
Jan Klaschka ◽  
Saak V. Ovsepian

Aging and chronic sleep deprivation (SD) are well-recognized risk factors for Alzheimer’s disease (AD), with N-methyl-D-aspartate receptor (NMDA) and downstream nitric oxide (NO) signalling implicated in the process. Herein, we investigate the impact of the age- and acute or chronic SD-dependent changes on the expression of NMDA receptor subunits (NR1, NR2A, and NR2B) and on the activities of NO synthase (NOS) isoforms in the cortex of Wistar rats, with reference to cerebral lateralization. In young adult controls, somewhat lateralized seasonal variations in neuronal and endothelial NOS have been observed. In aged rats, overall decreases in NR1, NR2A, and NR2B expression and reduction in neuronal and endothelial NOS activities were found. The age-dependent changes in NR1 and NR2B significantly correlated with neuronal NOS in both hemispheres. Changes evoked by chronic SD (dysfunction of endothelial NOS and the increasing role of NR2A) differed from those evoked by acute SD (increase in inducible NOS in the right side). Collectively, these results demonstrate age-dependent regulation of the level of NMDA receptor subunits and downstream NOS isoforms throughout the rat brain, which could be partly mimicked by SD. As described herein, age and SD alterations in the prevalence of NMDA receptors and NOS could contribute towards cognitive decline in the elderly, as well as in the pathobiology of AD and the neurodegenerative process.


Sign in / Sign up

Export Citation Format

Share Document