Network Externality and Subsidy Structure in Two-Sided Markets: Evidence from Electric Vehicle Incentives

2021 ◽  
Vol 13 (4) ◽  
pp. 393-432
Author(s):  
Katalin Springel

This paper uses new, large-scale vehicle registry data from Norway and a two-sided market framework to show nonneutrality of different subsidies and estimate their impact on electric vehicle adoption when network externalities are present. Estimates suggest a strong positive connection between electric vehicle purchases and both consumer price and charging station subsidies. Counterfactual analyses suggest that between 2010 and 2015, every dollar spent on station subsidies resulted in more than twice as many additional electric vehicle purchases than the same amount spent on price subsidies. However, this relation inverts with increased spending, as station subsidies’ impact tapers off faster. (JEL D12, D62, D85, H25, L62, Q54)

2011 ◽  
Vol 347-353 ◽  
pp. 3902-3907
Author(s):  
Liang Liang Chen ◽  
Ming Wu ◽  
Hao Zhang ◽  
Xiao Hua Ding ◽  
Jin Da Zhu

The energy supply infrastructures construction is the prerequisite and basis for the large-scale promotion and application of electric vehicles (EVs). The characteristics and current construction situation of several EV power supply infrastructures in China such as AC charging spot, charging station and battery swap station are introduced first, and the characteristics of time combination mode and space combination mode for the construction of EV charging facilities are also discussed. Meanwhile, the features of operation mode for EV power supply infrastructures in different developing stage of are analyzed, and the main bodies for EV power supply infrastructures construction are also introduced.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2021 ◽  
Vol 257 ◽  
pp. 01017
Author(s):  
Lin Xu ◽  
Bing Wang ◽  
Mingxi Cheng ◽  
Shangshang Fang

Due to the rapid promotion of electric vehicles, large-scale charging behavior of electric vehicles brings a large number of time and space highly random charging load, which will have a great impact on the safe operation of distribution network. This paper proposes a planning method of electric vehicle charging station based on travel data. Firstly, the didi trip data is processed and mined to get the trip matrix and other information. Then, the electric vehicle charging load forecasting model is established based on the established unit mileage power consumption model and charging model, and the charging demand distribution information is predicted by Monte Carlo method. Finally, the simulation analysis is carried out based on the trip data of some areas of a city, which shows the effectiveness of the established model feasibility.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2233
Author(s):  
Yvenn Amara-Ouali ◽  
Yannig Goude ◽  
Pascal Massart ◽  
Jean-Michel Poggi ◽  
Hui Yan

The field of electric vehicle charging load modelling has been growing rapidly in the last decade. In light of the Paris Agreement, it is crucial to keep encouraging better modelling techniques for successful electric vehicle adoption. Additionally, numerous papers highlight the lack of charging station data available in order to build models that are consistent with reality. In this context, the purpose of this article is threefold. First, to provide the reader with an overview of the open datasets available and ready to be used in order to foster reproducible research in the field. Second, to review electric vehicle charging load models with their strengths and weaknesses. Third, to provide suggestions on matching the models reviewed to six datasets found in this research that have not previously been explored in the literature. The open data search covered more than 860 repositories and yielded around 60 datasets that are relevant for modelling electric vehicle charging load. These datasets include information on charging point locations, historical and real-time charging sessions, traffic counts, travel surveys and registered vehicles. The models reviewed range from statistical characterization to stochastic processes and machine learning and the context of their application is assessed.


2019 ◽  
Vol 10 (1) ◽  
pp. 12 ◽  
Author(s):  
Yutaka Motoaki

This paper conducts a comparative analysis of academic research on location-allocation of electric vehicle fast chargers into the pattern of the actual fast-charger allocation in the United States. The work aims to highlight the gap between academic research and actual practice of charging-station placement and operation. It presents evidence that the node-serving approach is, in fact, applied in the actual location-allocation of fast charging stations. However, little evidence suggests that flow-capturing, which has been much more predominantly applied in research, is being applied in practice. The author argues that a large-scale location-allocation plan for public fast chargers should be formulated based on explicit consideration of stakeholders, the objective, practical constraints, and underlining assumptions.


2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Bipul Kumar Talukdar ◽  
Bimal Chandra Deka

Electric vehicle technologies have seen rapid development in recent years. However, Reliability, Availability, and Maintainability (RAM) related concerns still have restricted large-scale commercial utilization of these vehicles. This paper presents an approach to carry out a quantitative RAM analysis of a plug-in electric vehicle. A mathematical model is developed in the Markov Framework incorporating the reliability characteristics of all significant electrical components of the vehicle system, namely battery, motor, drive, controllers, charging unit, and energy management unit. The study shows that the vehicle’s survivability can be increased by improving its components’ restoration rates. The paper also investigates the role of a charging station on the availability of the vehicle. It illustrates how the grid power supply’s reliability influences the operational effectiveness of a plug-in electric vehicle. The concepts that are presented in the article can support further study on the reliability design and maintenance of a plug-in electric vehicle.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 260
Author(s):  
Jon Anzola ◽  
Iosu Aizpuru ◽  
Asier Arruti

This paper focuses on the design of a charging unit for an electric vehicle fast charging station. With this purpose, in first place, different solutions that exist for fast charging stations are described through a brief introduction. Then, partial power processing architectures are introduced and proposed as attractive strategies to improve the performance of this type of applications. Furthermore, through a series of simulations, it is observed that partial power processing based converters obtain reduced processed power ratio and efficiency results compared to conventional full power converters. So, with the aim of verifying the conclusions obtained through the simulations, two downscaled prototypes are assembled and tested. Finally, it is concluded that, in case galvanic isolation is not required for the charging unit converter, partial power converters are smaller and more efficient alternatives than conventional full power converters.


Author(s):  
Yumei Luo ◽  
Guiping Wang ◽  
Yuwei Li ◽  
Qiongwei Ye

M-health apps have developed rapidly and are widely accepted, but users’ continued intention to use m-health apps has not been fully explored. This study was designed to obtain a better understanding of users’ continued intention to use m-health apps. We developed a theoretical model by incorporating the protection motivation theory and network externalities and conducted an empirical study of a 368-respondent sample. The results showed that: (1) perceived vulnerability has a direct impact on users’ self-efficacy and response efficacy; (2) self-efficacy and response efficacy have a direct impact on users’ attitudes and continued intention; (3) network externalities affect users’ attitudes and continued intention, among which direct network externalities have an indirect impact on users’ continued intention through attitude; and (4) the impacts of self-efficacy, response efficacy, and indirect network externalities on continued intention are partially meditated by attitudes.


Sign in / Sign up

Export Citation Format

Share Document