Speech intelligibility with bilateral bone-anchored hearing aids: the Birmingham experience

2002 ◽  
Vol 116 (S28) ◽  
pp. 47-51 ◽  
Author(s):  
Sunil N. Dutt ◽  
Ann-Louise McDermott ◽  
Stuart P. Burrell ◽  
Huw R. Cooper ◽  
Andrew P. Reid ◽  
...  

The Birmingham bone-anchored hearing aid (BAHA) programme, since its inception in 1988, has fitted more than 300 patients with unilateral bone-anchored hearing aids. Recently, some of the patients who benefited extremely well with unilateral aids applied for bilateral amplification. To date, 15 patients have been fitted with bilateral BAHAs. The benefits of bilateral amplification have been compared to unilateral amplification in 11 of these patients who have used their second BAHA for 12 months or longer. Following a subjective analysis in the form of comprehensive questionnaires, objective testing was undertaken to assess specific issues such as ‘speech recognition in quiet’, ‘speech recognition in noise’ and a modified ‘speech-in-simulated-party-noise’ (Plomp) test.‘Speech in quiet’ testing revealed a 100 per cent score with both unilateral and bilateral BAHAs. With ‘speech in noise’ all 11 patients scored marginally better with bilateral aids compared to best unilateral responses. The modified Plomp test demonstrated that bilateral BAHAs provided maximum flexibility when the origin of noise cannot be controlled as in day-to-day situations. In this small case series the results are positive and are comparable to the experience of the Nijmegen BAHA group.

1994 ◽  
Vol 103 (5) ◽  
pp. 368-374 ◽  
Author(s):  
Emmanuel A. M. Mylanus ◽  
Ad F. M. Snik ◽  
Frank F. Jorritsma ◽  
Cor W. R. J. Cremers ◽  
Hans Verschuure

Sixty-two patients with conductive or mixed hearing loss (average bone conduction threshold at 0.5, 1, and 2 kHz ranged from 1 to 44 dB hearing level) were fitted with a bone-anchored hearing aid (BAHA type HC200). Previously, 52 of them had used a conventional bone conduction hearing aid (CBHA) and 10 of them an air conduction hearing aid (ACHA). Audiological tests were conducted to compare the patients' performance with the BAHA to that with their previous conventional hearing aid. In the speech recognition in quiet test, only 5 patients in the CBHA group improved significantly: the majority had 100% scores with both hearing aids. In the speech recognition in noise test, 28 patients improved significantly. The mean improvement in the signal to noise ratio (S/N) in the CBHA group was −2.3 ± 2.4 dB. That none of the patients in the CBHA group performed worse with the BAHA led us to the conclusion that the BAHA is superior to the CBHA. None of the patients in the ACHA group achieved a better speech recognition in quiet score using the BAHA. On average, there was no significant improvement in the S/N ratio in the ACHA group, although in 6 patients the S/N ratio improved significantly, and in 1 patient it worsened significantly. From the whole group, the performance of only 2 patients, both in the ACHA group, was significantly worse with the BAHA on one of the speech recognition tests.


2012 ◽  
Vol 23 (03) ◽  
pp. 171-181 ◽  
Author(s):  
Rachel A. McArdle ◽  
Mead Killion ◽  
Monica A. Mennite ◽  
Theresa H. Chisolm

Background: The decision to fit one or two hearing aids in individuals with binaural hearing loss has been debated for years. Although some 78% of U.S. hearing aid fittings are binaural (Kochkin , 2010), Walden and Walden (2005) presented data showing that 82% (23 of 28 patients) of their sample obtained significantly better speech recognition in noise scores when wearing one hearing aid as opposed to two. Purpose: To conduct two new experiments to fuel the monaural/binaural debate. The first experiment was a replication of Walden and Walden (2005), whereas the second experiment examined the use of binaural cues to improve speech recognition in noise. Research Design: A repeated measures experimental design. Study Sample: Twenty veterans (aged 59–85 yr), with mild to moderately severe binaurally symmetrical hearing loss who wore binaural hearing aids were recruited from the Audiology Department at the Bay Pines VA Healthcare System. Data Collection and Analysis: Experiment 1 followed the procedures of the Walden and Walden study, where signal-to-noise ratio (SNR) loss was measured using the Quick Speech-in-Noise (QuickSIN) test on participants who were aided with their current hearing aids. Signal and noise were presented in the sound booth at 0° azimuth under five test conditions: (1) right ear aided, (2) left ear aided, (3) both ears aided, (4) right ear aided, left ear plugged, and (5) unaided. The opposite ear in (1) and (2) was left open. In Experiment 2, binaural Knowles Electronics Manikin for Acoustic Research (KEMAR) manikin recordings made in Lou Malnati's pizza restaurant during a busy period provided a typical real-world noise, while prerecorded target sentences were presented through a small loudspeaker located in front of the KEMAR manikin. Subjects listened to the resulting binaural recordings through insert earphones under the following four conditions: (1) binaural, (2) diotic, (3) monaural left, and (4) monaural right. Results: Results of repeated measures ANOVAs demonstrated that the best speech recognition in noise performance was obtained by most participants with both ears aided in Experiment 1 and in the binaural condition in Experiment 2. Conclusions: In both experiments, only 20% of our subjects did better in noise with a single ear, roughly similar to the earlier Jerger et al (1993) finding that 8–10% of elderly hearing aid users preferred one hearing aid.


2018 ◽  
Vol 27 (4) ◽  
pp. 581-593 ◽  
Author(s):  
Lisa Brody ◽  
Yu-Hsiang Wu ◽  
Elizabeth Stangl

Purpose The aim of this study was to compare the benefit of self-adjusted personal sound amplification products (PSAPs) to audiologist-fitted hearing aids based on speech recognition, listening effort, and sound quality in ecologically relevant test conditions to estimate real-world effectiveness. Method Twenty-five older adults with bilateral mild-to-moderate hearing loss completed the single-blinded, crossover study. Participants underwent aided testing using 3 PSAPs and a traditional hearing aid, as well as unaided testing. PSAPs were adjusted based on participant preference, whereas the hearing aid was configured using best-practice verification protocols. Audibility provided by the devices was quantified using the Speech Intelligibility Index (American National Standards Institute, 2012). Outcome measures assessing speech recognition, listening effort, and sound quality were administered in ecologically relevant laboratory conditions designed to represent real-world speech listening situations. Results All devices significantly improved Speech Intelligibility Index compared to unaided listening, with the hearing aid providing more audibility than all PSAPs. Results further revealed that, in general, the hearing aid improved speech recognition performance and reduced listening effort significantly more than all PSAPs. Few differences in sound quality were observed between devices. All PSAPs improved speech recognition and listening effort compared to unaided testing. Conclusions Hearing aids fitted using best-practice verification protocols were capable of providing more aided audibility, better speech recognition performance, and lower listening effort compared to the PSAPs tested in the current study. Differences in sound quality between the devices were minimal. However, because all PSAPs tested in the study significantly improved participants' speech recognition performance and reduced listening effort compared to unaided listening, PSAPs could serve as a budget-friendly option for those who cannot afford traditional amplification.


2019 ◽  
Vol 30 (04) ◽  
pp. 315-326 ◽  
Author(s):  
Jumana Harianawala ◽  
Jason Galster ◽  
Benjamin Hornsby

AbstractThe hearing in noise test (HINT) is the most popular adaptive test used to evaluate speech in noise performance, especially in context of hearing aid features. However, the number of conditions that can be tested on the HINT is limited by a small speech corpus. The American English Matrix test (AEMT) is a new alternative adaptive speech in noise test with a larger speech corpus. The study examined the relationships between the performance of hearing aid wearers on the HINT and the AEMT.To examine whether there was a difference in performance of hearing aid wearers on the HINT and the AEMT. A secondary purpose, given the AEMT’s steep performance-intensity function, was to determine whether the AEMT is more sensitive to changes in speech recognition resulting from directional (DIR) microphone processing in hearing aids.A repeated measures design was used in this study. Multiple measurements were made on each subject. Each measurement involved a different experimental condition.Ten adults with hearing loss participated in this study.All participants completed the AEMT and HINT, using adaptive and fixed test formats while wearing hearing aids. Speech recognition was assessed in two hearing aid microphone settings—omnidirectional and fixed DIR. All testing was conducted via sound field presentation. Performance on HINT and AEMT were systematically compared across all test conditions using a linear model with repeated measures.The results of this study revealed that adult hearing aid users perform differently on the HINT and AEMT, with adaptive AEMT testing yielding significantly better (more negative) thresholds than the HINT. Slopes of performance intensity functions obtained by testing at multiple fixed signal-to-noise ratios, revealed a somewhat steeper slope for the HINT compared with the AEMT. Despite this steeper slope, the benefit provided by DIR microphones was not significantly different between the two speech tests.The observation of similar DIR benefits of the HINT and AEMT suggests that the HINT and AEMT are equally sensitive to changes in speech recognition thresholds following intervention. Therefore, the decision to use the AEMT or the HINT will depend on the purpose of the study and/or the technology being investigated. Other test related factors such as available sentence corpus, learning effects and test time will also influence test selection.


2014 ◽  
Vol 128 (2) ◽  
pp. 119-127 ◽  
Author(s):  
P Hill-Feltham ◽  
S A Roberts ◽  
R Gladdis

AbstractObjective:This study compared the performance of two new bone-anchored hearing aids with older bone-anchored hearing aids that were not fully digital.Methods:Fourteen experienced bone-anchored hearing aid users participated in this cross-over study. Performance of their existing bone-anchored hearing aid was assessed using speech-in-noise testing and questionnaires. Participants were then fitted with either a Ponto Pro or a BP100 device. After four weeks of use with each new device, the same assessments were repeated.Results:Speech-in-noise testing for the 50 per cent signal-to-noise ratio (the ratio at which 50 per cent of responses were correct) showed no significant differences between the Ponto Pro and the BP100 devices (p = 0.1) However, both devices showed significant improvement compared with the participants' previous bone-anchored hearing aid devices (p < 0.001). There were no significant differences between the two new devices in the questionnaire data.Conclusion:Both fully digital bone-anchored hearing aids demonstrated superior speech processing compared with the previous generation of devices. There were no substantial differences between the two digital devices in either objective or subjective tests.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Chen ◽  
Zhe Wang ◽  
Ruijuan Dong ◽  
Xinxing Fu ◽  
Yuan Wang ◽  
...  

Objective: This study was aimed at evaluating improvements in speech-in-noise recognition ability as measured by signal-to-noise ratio (SNR) with the use of wireless remote microphone technology. These microphones transmit digital signals via radio frequency directly to hearing aids and may be a valuable assistive listening device for the hearing-impaired population of Mandarin speakers in China.Methods: Twenty-three adults (aged 19–80 years old) and fourteen children (aged 8–17 years old) with bilateral sensorineural hearing loss were recruited. The Mandarin Hearing in Noise Test was used to test speech recognition ability in adult subjects, and the Mandarin Hearing in Noise Test for Children was used for children. The subjects’ perceived SNR was measured using sentence recognition ability at three different listening distances of 1.5, 3, and 6 m. At each distance, SNR was obtained under three device settings: hearing aid microphone alone, wireless remote microphone alone, and hearing aid microphone and wireless remote microphone simultaneously.Results: At each test distance, for both adult and pediatric groups, speech-in-noise recognition thresholds were significantly lower with the use of the wireless remote microphone in comparison with the hearing aid microphones alone (P &lt; 0.05), indicating better SNR performance with the wireless remote microphone. Moreover, when the wireless remote microphone was used, test distance had no effect on speech-in-noise recognition for either adults or children.Conclusion: Wireless remote microphone technology can significantly improve speech recognition performance in challenging listening environments for Mandarin speaking hearing aid users in China.


2021 ◽  
Vol 4 (2) ◽  
pp. 45-50
Author(s):  
Ecem KARTAL ÖZCAN ◽  
Merve ÖZBAL BATUK ◽  
Şule KAYA ◽  
Gonca SENNAROĞLU

Assessment of speech perception in noise in children with hearing aids: Preliminary results* Objective: Noisy environments are a part of the daily life of children, just like adults. Children with hearing loss who wear hearing aids are more susceptible to the negative effects of noise than their normal-hearing peers. This study aims to evaluate the speech recognition in noise performance of hearing aid users and compare them with their normal-hearing peers. Material and Method: Five children aged 6-12 years with bilateral moderate to severe symmetrical sensorineural hearing loss and using bilateral behind-the-ear hearing aids were included in the study. 4 different conditions of the Turkish HINT-C were applied, and a speech recognition threshold (SRT) is determined for each condition. Results: Regardless of their age, the SRT needed by children with hearing aids to achieve equal performance with their normal-hearing peers was found to be higher for all test conditions. As seen in children with normal hearing in general, the mean noise front score of the children with hearing loss was higher than the mean noise right and noise left scores. Conclusion: The results of this study revealed that children with bilaterally symmetrical moderate to severe hearing loss achieved poor speech recognition scores in environments similar to the classroom environment, compared to their normal-hearing peers. Our results guided appropriate rehabilitation and follow-up. Keywords: noise, speech recognition in noise, hearing loss, hearing aid, pediatric audiology, HINT, HINT-C


1998 ◽  
Vol 107 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Ad F. M. Snik ◽  
Andy J. Beynon ◽  
Catharina T. M. van der Pouw ◽  
Emmanuel A. M. Mylanus ◽  
Cor W. R. J. Cremers

Most, but not all, hearing-impaired patients with air conduction hearing aids prefer binaural amplification instead of monaural amplification. The binaural application of the bone conduction hearing aid is more disputable, because the attenuation (in decibels) of sound waves across the skull is so small (10 dB) that even one bone conduction hearing aid will stimulate both cochleas approximately to the same extent. Binaural fitting of the bone-anchored hearing aid was studied in three experienced bone-anchored hearing aid users. The experiments showed that sound localization, and speech recognition in quiet and also under certain noisy conditions improved significantly with binaural listening compared to the monaural listening condition. On the average, the percentage of correct identifications (within 45°) in the sound localization experiment improved by 53% with binaural listening; the speech reception threshold in quiet improved by 4.4 dB. The binaural advantage in the speech-in-noise test was comparable to that of a control group of subjects with normal hearing listening monaurally versus binaurally. The improvements in the scores were ascribed to diotic summation (improved speech recognition in quiet) and the ability to separate sounds in the binaural listening condition (improved sound localization and improved speech recognition in noise whenever the speech and noise signals came from different directions). All three patients preferred the binaural bone-anchored hearing aids and used them all day.


2005 ◽  
Vol 16 (05) ◽  
pp. 270-277 ◽  
Author(s):  
Todd A. Ricketts ◽  
Benjamin W.Y. Hornsby

This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.


1984 ◽  
Vol 49 (4) ◽  
pp. 409-418 ◽  
Author(s):  
David B. Hawkins

Four hearing aid arrangements (monaural-omnidirectional, monaural-directional, binaural-omnidirectional, binaural-directional) and a number of FM system-personal hearing aid combinations (including direct input, neck loop, and silhouette inductor—monaural and binaural—and environmental microphone on and off) were evaluated in a school classroom on nine children with mild-to-moderate sensorineural hearing losses. Two measures of speech recognition in noise were employed. First, the signal-to-noise ratio (S/N) yielding 50% identification of spondees was determined using a simple up-down adaptive procedure. Second, word recognition scores were obtained for three amplification arrangements at two different S/Ns (+6 and + 15 dB). The average FM advantage over a personal hearing aid was equivalent to a 15-dB improvement in S/N. Activation of the hearing aid microphone caused most of the FM advantage to disappear. The benefit offered by the FM system decreased as the environmental S/N increased but remained significant even at +15 dB. Significant improvement also was found with the use of directional as compared to omnidirectional microphones, both in the hearing aids and FM teacher microphone.


Sign in / Sign up

Export Citation Format

Share Document