Observations on the use of medetomidine/ketamine and its reversal with atipamezole for chemical restraint in the mouse

1998 ◽  
Vol 32 (1) ◽  
pp. 18-22 ◽  
Author(s):  
J. I. Cruz ◽  
J. M. Loste ◽  
O. H. Burzaco

Ketamine and medetomidine produced chemical restraint for minor procedures in mice. Male mice required 50 mg/kg ketamine, 10 mg/kg medetomidine intraperitoneally (i.p.), and females a higher dose of ketamine (75 mg/kg i.p.). The onset of restraint effects, judged by loss of righting reflex, was more rapid in males than females. The effects were reversed using atipamezole (1–2.5 mg/kg). Recovery following administration of atipamezole was more rapid in males than females. We conclude that ketamine/medetomidine, followed by reversal with atipamezole, is an effective technique for chemical restraint in the mouse.

2018 ◽  
Vol 129 (2) ◽  
pp. 271-277 ◽  
Author(s):  
Na Li ◽  
Dongshi Lu ◽  
Lei Yang ◽  
Huan Tao ◽  
Younian Xu ◽  
...  

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (131Xe) has nuclear spin of 3/2, xenon 129 (129Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Methods Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (132Xe), xenon 134 (134Xe), 131Xe, and 129Xe groups. Due to xenon’s low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Results Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for 132Xe, 134Xe, 131Xe, and 129Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of 132Xe, 134Xe, 131Xe, and 129Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å3. Conclusions Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of 129Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.


2021 ◽  
Vol 73 (1) ◽  
pp. 108-114
Author(s):  
R.O. Kunz ◽  
C. Cardeal ◽  
L.E. Riekher Junior ◽  
L.G.E. Valle ◽  
S.T. Belettini ◽  
...  

ABSTRACT Ten free-living adult coatis (two males and eight females) were chemically restrained with "ZAD-50", a concentrated formulation prepared with the dehydrated content of a Zoletil/50® vial diluted with 0.25mL of 1% atropine, 0.265mL of Dormiun-V®, and 2.2mL of distilled water, being exactly 3.0mL. The formula was administered to each animal previously captured and physically contained with a net. The loss of righting reflex (RR) occurred at 2.3±0.8 minutes post-injection (MPI), with anesthesia beginning at 4.4±2.7 MPI. Myorelaxant and analgesia were considered excellent at all moments of the evaluation. Conscious reactions were observed at 78.7±22.2 MPI, the return of the RR occurred at 101 ± 18 MPI, and normal ambulation was acquired at 137.0±31.0 MPI. The mean values of physiological parameters measured every 10 minutes between 10 and 50 MPI were 152.2 heartbeats per minute for heart rate, 66.4 respiratory movements per minute for respiratory rate, 39.2oC for rectal temperature, 86.2% for SpO2 and 14.6 mmHg for systolic blood pressure. In the same times, the EEG registered sinus rhythm. No adverse reactions were observed, and the assessed vital parameters remained compatible with the state of chemical restraint.


Author(s):  
Meghan M. Louis ◽  
Gregory Scott ◽  
Dustin Smith ◽  
Brigid V. Troan ◽  
Larry J. Minter ◽  
...  

Euthanasia techniques in amphibians are poorly described and sparsely validated. This study investigated potassium chloride (KCl) for euthanasia of anesthetized marine toads ( Rhinella marina ). Twenty three toads were immersed in buffered MS-222 (2 g/L) for five minutes (min) beyond loss of righting reflex, manually removed, and randomly administered KCl (n = 6/group) via one of three routes: intracardiac at 10 mEq/kg (IC), intracoelomic at 100 mEq/kg (ICe), or immersion at 4500 mEq/L (IMS) or no treatment (C) (n = 5/group). Doppler sounds were assessed continuously from prior to treatment until two min post-treatment and every five min thereafter until sound cessation or resumption of spontaneous movement. Plasma potassium concentration (K+) was measured at the time of Doppler sound cessation in ICe and IMS. In IC, ICe, IMS, and C, Doppler sound cessation occurred in 4/6, 6/6, 6/6, and 1/5 toads with median (range) or mean + SD times of 0.23 (0-4.65), 17.5 + 9.0, 40.6 + 10.9, and >420 min, respectively. Nonsuccess in 2/6 toads in IC was suspected due to technique failure. Plasma K+ exceeded the limits of detection (>9 mmol/L) in 12/12 toads in ICe and IMS. Five of six toads in C resumed spontaneous movement at median (range) times of 327 (300-367) min. KCl delivered via an intracardiac, intracoelomic, or immersion routes resulted in Doppler sound cessation in 16 of 18 toads and may be appropriate for euthanasia of anesthetized marine toads.


2000 ◽  
Vol 93 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Robert Dickinson ◽  
Ian White ◽  
William R. Lieb ◽  
Nicholas P. Franks

Background Although it is accepted widely that optically active intravenous general anesthetics produce stereoselective effects in animals, the situation regarding volatile agents is confused. Conventional studies with scarce isoflurane enantiomers have been limited to small numbers of animals and produced conflicting results. By injecting these volatile enantiomers intravenously, however, it is possible to study large numbers of animals and obtain reliable results that can help to identify the molecular targets for isoflurane. Methods Pure isoflurane enantiomers were administered intravenously to rats after solubilization in a lipid emulsion. The ability of each enantiomer to produce a loss of righting reflex was determined as a function of dose, and quantal dose-response curves were constructed. In addition, sleep times were recorded with each enantiomer. Chiral gas chromatography was used to measure relative enantiomer concentrations in the brains of rats injected with racemic isoflurane. Results The S(+)-enantiomer was 40 +/- 8% more potent than the R(-)-enantiomer at producing a loss of righting reflex. The S(+)-enantiomer induced longer sleep times (by about 50%) than did the R(-)-enantiomer. Rats anesthetized by a dose of racemic isoflurane sufficient to achieve a half-maximal effect had essentially identical brain concentrations of the two enantiomers. Conclusions The S(+)-enantiomer of the general anesthetic isoflurane is significantly (P < 0.001) more potent than the R(-)-enantiomer at causing a loss of righting reflex in rats. This confirms the view that isoflurane acts by binding to chiral sites. The observed degree of stereoselectivity provides a useful guide for ascertaining from in vitro experiments which molecular targets are most likely to play major roles in the loss of righting reflex caused by isoflurane.


2002 ◽  
Vol 97 (4) ◽  
pp. 906-911 ◽  
Author(s):  
Avery Tung ◽  
Martin J. Szafran ◽  
Bryan Bluhm ◽  
Wallace B. Mendelson

Background Sleep and anesthesia differ physiologically but produce a similar loss of responsiveness to environmental stimuli. Recent data suggest that neuronal networks active in naturally occurring sleep also play a role in the anesthetized state. Changes in the propensity to sleep may then modify the response to anesthetic agents. The authors tested the hypothesis that sleep-deprived rats would require less anesthetic than rested rats to achieve a similar loss of responsiveness. Methods Rats were subjected to a 24-h period of either sleep deprivation or ad libitum activity. Sleep deprivation was produced by placing rats on a disk that rotated when sleep was detected by electroencephalographic and electromyographic (EEG, EMG) monitoring. A fixed dose of anesthetic agent was then administered, and the time required to induce loss of righting reflex was measured. Anesthetic administration was then stopped, and the time to recovery measured. All rats received both treatments separated by 7 days. Results Sleep deprivation reduced the time to loss of righting reflex by 40% for propofol (P < 0.025) and 55% for isoflurane (P < 0.025) and prolonged the time to recovery. In a separate control experiment, exposure to the deprivation environment but with disk rotation modified to allow adequate sleep did not affect the response to anesthetic administration. Conclusions Sleep deprivation significantly potentiated the ability of inhaled and intravenous anesthetic agents to induce a loss of righting reflex. These results support the hypothesis that neuronal networks active in sleep are also involved in the anesthetized state and suggest that sleep deprivation may partly explain the variability in patient response to anesthesia.


2014 ◽  
Vol 738 ◽  
pp. 153-157 ◽  
Author(s):  
Zheng Yong ◽  
Xiang Gao ◽  
Wentao Ma ◽  
Huajing Dong ◽  
Zehui Gong ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Emma R. Huels ◽  
Trent Groenhout ◽  
Christopher W. Fields ◽  
Tiecheng Liu ◽  
George A. Mashour ◽  
...  

Studies aimed at investigating brain regions involved in arousal state control have been traditionally limited to subcortical structures. In the current study, we tested the hypothesis that inactivation of prefrontal cortex, but not two subregions within parietal cortex—somatosensory barrel field and medial/lateral parietal association cortex—would suppress arousal, as measured by an increase in anesthetic sensitivity. Male and female Sprague Dawley rats were surgically prepared for recording electroencephalogram and bilateral infusion into prefrontal cortex (N = 13), somatosensory barrel field (N = 10), or medial/lateral parietal association cortex (N = 9). After at least 10 days of post-surgical recovery, 156 μM tetrodotoxin or saline was microinjected into one of the cortical sites. Ninety minutes after injection, rats were anesthetized with 2.5% sevoflurane and the time to loss of righting reflex, a surrogate for loss of consciousness, was measured. Sevoflurane was stopped after 45 min and the time to return of righting reflex, a surrogate for return of consciousness, was measured. Tetrodotoxin-mediated inactivation of all three cortical sites decreased (p < 0.05) the time to loss of righting reflex. By contrast, only inactivation of prefrontal cortex, but not somatosensory barrel field or medial/lateral parietal association cortex, increased (p < 0.001) the time to return of righting reflex. Burst suppression ratio was not altered following inactivation of any of the cortical sites, suggesting that there was no global effect due to pharmacologic lesion. These findings demonstrate that prefrontal cortex plays a causal role in emergence from anesthesia and behavioral arousal.


Sign in / Sign up

Export Citation Format

Share Document