The frequency of HIV-I drug resistance mutations among treatment-naïve individuals at a tertiary care centre in south India

2009 ◽  
Vol 20 (8) ◽  
pp. 522-526 ◽  
Author(s):  
A J Kandathil ◽  
R Kannangai ◽  
O C Abraham ◽  
P Rupali ◽  
S A Pulimood ◽  
...  

Antiretroviral treatment (ART) use in India requires information on baseline drug resistance mutations and polymorphisms in the protease (Pr) and reverse transcriptase (RT) genes of HIV-1 strains from treatment-naïve individuals. We report resistance predictor mutations and polymorphisms in the Pr and the RT sequence of non-clade B HIV-1 strains from ART naïve individuals. The genotypic resistance assay was done on 93 treatment-naïve individuals. The sequences were analysed by Stanford HIV drug resistance data for genotypic drug resistance analysis and REGA HIV-1 subtyping tool. Phylogenetic tree was generated with MEGA 4 for quality control. Ninety-two strains belonged to clade C and one to clade A (A1). Amino acid substitutions were seen at positions associated with drug resistance in Pr gene – 10, 24, 74 (each 3%) and position 82 (11%). Substitutions were seen at positions 41 (1%), 100 (1%), 101 (6%), 103 (2%), 179 (6%) and 181 (1%) of the RT sequence known to confer drug resistance in clade B. Polymorphisms in HIV-1 pol gene among treatment-naïve individuals were similar when compared with previous data. One strain each had Y181C substitution, T74S and E35G substitutions in the Pr and one had A98G, K101R and L210FL substitutions in RT.

2015 ◽  
Vol 19 (5) ◽  
pp. 273-275 ◽  
Author(s):  
Rajesh Kannangai ◽  
Shoba David ◽  
Vijayanand C. Sundaresan ◽  
Jaiprasath Sachithanandham ◽  
Monika Mani ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2016 ◽  
Vol 32 (12) ◽  
pp. 1223-1228 ◽  
Author(s):  
Firoz Abdoel Wahid ◽  
Rachel Sno ◽  
Edith Darcissac ◽  
Anne Lavergne ◽  
Malti R. Adhin ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 75-83 ◽  
Author(s):  
A. A. Kirichenko ◽  
D. E. Kireev ◽  
A. E. Lopatukhin ◽  
A. V. Murzakova ◽  
I. A. Lapovok ◽  
...  

Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.


2017 ◽  
Vol 10 (1) ◽  
pp. 75-78
Author(s):  
Rozainanee Mohd Zain ◽  
Nabila Ibrahim ◽  
Suriani Ismail ◽  
Jeyanthi Suppiah ◽  
Nor Aziyah Mat Rahim ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145772 ◽  
Author(s):  
Soo-Yon Rhee ◽  
Michael R. Jordan ◽  
Elliot Raizes ◽  
Arlene Chua ◽  
Neil Parkin ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0154317 ◽  
Author(s):  
Yaxelis Mendoza ◽  
Juan Castillo Mewa ◽  
Alexander A. Martínez ◽  
Yamitzel Zaldívar ◽  
Néstor Sosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document