scholarly journals Drug Resistance Mutations to Protease and Reverse Transcriptase Inhibitors in Treatment Naive HIV-1 Clade C Infected Individuals from Mumbai, India

2010 ◽  
Vol 7 (1) ◽  
pp. 13-23 ◽  
Author(s):  
P.D. Potdar ◽  
B.S. Daswani ◽  
N.J. Rane
2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2019 ◽  
Vol 11 (2) ◽  
pp. 75-83 ◽  
Author(s):  
A. A. Kirichenko ◽  
D. E. Kireev ◽  
A. E. Lopatukhin ◽  
A. V. Murzakova ◽  
I. A. Lapovok ◽  
...  

Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun Lan ◽  
Linghua Li ◽  
Xiang He ◽  
Fengyu Hu ◽  
Xizi Deng ◽  
...  

Abstract Background Transmitted drug resistance (TDR) that affects the effectiveness of the first-line antiretroviral therapy (ART) regimen is becoming prevalent worldwide. However, its prevalence and transmission among HIV-1 treatment-naïve patients in Guangdong, China are rarely reported. We aimed to comprehensively analyze the prevalence of TDR and the transmission clusters of HIV-1 infected persons before ART in Guangdong. Methods The HIV-1 treatment-naïve patients were recruited between January 2018 and December 2018. The HIV-1 pol region was amplified by reverse transcriptional PCR and sequenced by sanger sequencing. Genotypes, surveillance drug resistance mutations (SDRMs) and TDR were analyzed. Genetic transmission clusters among patients were identified by pairwise Tamura-Nei 93 genetic distance, with a threshold of 0.015. Results A total of 2368 (97.17%) HIV-1 pol sequences were successfully amplified and sequenced from the enrolled 2437 patients. CRF07_BC (35.90%, 850/2368), CRF01_AE (35.56%, 842/2368) and CRF55_01B (10.30%, 244/2368) were the main HIV-1 genotypes circulating in Guangdong. Twenty-one SDRMs were identified among fifty-two drug-resistant sequences. The overall prevalence of TDR was 2.20% (52/2368). Among the 2368 patients who underwent sequencing, 8 (0.34%) had TDR to protease inhibitors (PIs), 22 (0.93%) to nucleoside reverse transcriptase inhibitors (NRTIs), and 23 (0.97%) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Two (0.08%) sequences showed dual-class resistance to both NRTIs and NNRTIs, and no sequences showed triple-class resistance. A total of 1066 (45.02%) sequences were segregated into 194 clusters, ranging from 2 to 414 sequences. In total, 15 (28.85%) of patients with TDR were included in 9 clusters; one cluster contained two TDR sequences with the K103N mutation was observed. Conclusions There is high HIV-1 genetic heterogeneity among patients in Guangdong. Although the overall prevalence of TDR is low, it is still necessary to remain vigilant regarding some important SDRMs.


2009 ◽  
Vol 20 (8) ◽  
pp. 522-526 ◽  
Author(s):  
A J Kandathil ◽  
R Kannangai ◽  
O C Abraham ◽  
P Rupali ◽  
S A Pulimood ◽  
...  

Antiretroviral treatment (ART) use in India requires information on baseline drug resistance mutations and polymorphisms in the protease (Pr) and reverse transcriptase (RT) genes of HIV-1 strains from treatment-naïve individuals. We report resistance predictor mutations and polymorphisms in the Pr and the RT sequence of non-clade B HIV-1 strains from ART naïve individuals. The genotypic resistance assay was done on 93 treatment-naïve individuals. The sequences were analysed by Stanford HIV drug resistance data for genotypic drug resistance analysis and REGA HIV-1 subtyping tool. Phylogenetic tree was generated with MEGA 4 for quality control. Ninety-two strains belonged to clade C and one to clade A (A1). Amino acid substitutions were seen at positions associated with drug resistance in Pr gene – 10, 24, 74 (each 3%) and position 82 (11%). Substitutions were seen at positions 41 (1%), 100 (1%), 101 (6%), 103 (2%), 179 (6%) and 181 (1%) of the RT sequence known to confer drug resistance in clade B. Polymorphisms in HIV-1 pol gene among treatment-naïve individuals were similar when compared with previous data. One strain each had Y181C substitution, T74S and E35G substitutions in the Pr and one had A98G, K101R and L210FL substitutions in RT.


2020 ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients suspected of failing on the South African national second-line cART regimen with bPIs.Methods: During 2017 and 2018, 67 patient samples were selected, of which 56 samples were successfully analyzed. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database.Results: Statistically significantly (p<0.001) higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to nucleoside reverse transcriptase inhibitors (11%; 6/56), non-nucleoside reverse transcriptase inhibitors (9%; 5/56) and integrase inhibitor RAM (4%; 2/56). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n=13) in protease and K65R (n=5), K103N (n=7) and M184V (n=5) in reverse transcriptase.Conclusions: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in <20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


2018 ◽  
Vol 146 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Y.X. Song ◽  
R.L. Xin ◽  
Z.C. Li ◽  
H.W. Yu ◽  
W.H. Lun ◽  
...  

AbstractTo optimise patients’ outcomes and gain insight into transmitted drug resistance (TDR) among human immunodeficiency virus (HIV)-1 treatment-naive patients in Beijing, the prevalence of TDR was assessed. Demographic and clinical data of 1241 treatment-naive patients diagnosed between April 2014 and February 2015 were collected. TDR was defined using the Stanford University HIV drug resistance mutations database. The risk factors were evaluated by multi-logistic regression analysis. Among 932 successfully amplified cases, most were male (96.78%) and infected through men having sex with men (91.74%). Genotype were CRF01_AE (56.44%), B (20.60%), CRF07_BC (19.96%), C (1.61%) and other genotypes (1.39%). The overall prevalence of TDR was 6.12%. Most frequent mutations occurred in non-nucleoside reverse transcriptase inhibitors (NNRTIs) (3.11%), followed by protease inhibitors (PIs) (2.25%) and nucleoside reverse transcriptase inhibitors (NRTIs) (1.32%). Furthermore, HIV-1 genotype was associated with high risk of resistance, in which genotype C and other genotype may have higher risk for resistance. The prevalence among treatment-naive patients in Beijing was low. Resistance to NNRTIs was higher than with PIs or NRTIs. Continuous monitoring of regional levels of HIV-1 TDRs would contribute to improve treatment outcomes and prevent failures.


2018 ◽  
Vol 11 ◽  
pp. 117863371878887
Author(s):  
Sanjeev Sinha ◽  
Kartik Gupta ◽  
Nawaid Hussain Khan ◽  
Dibyakanti Mandal ◽  
Mikashmi Kohli ◽  
...  

Background: Emergence of human immunodeficiency virus (HIV) drug resistance mutations prior to highly active antiretroviral therapy is a serious problem in clinical management of HIV/AIDS. Risk factors for appearance of drug resistance mutations are not known. We hypothesize that Mycobacterium tuberculosis infection may contribute to rapid emergence of such mutations in antiretroviral therapy–naïve patients. Methods: A total of 115 patients were recruited in this study of which 75 were HIV+TB+ coinfected (group 1) and 40 were HIV+TB− (group 2). Blood samples from all the patients were collected and CD4+ cell counts; HIV-1 plasma viral load and sequencing of protease and two-third region of reverse transcriptase of HIV-1 was performed and analyzed for drug resistance pattern. Results: For patients with HIV+TB+, 10.6% (8/75) had mutations to non-nucleoside reverse transcriptase inhibitors (NNRTIs), 4% (3/75) to nucleoside reverse transcriptase inhibitors, and only 2.6% (2/75) patients had mutations to protease inhibitors. Interestingly, for group 2 (HIV+TB−), there were only NNRTI mutations found among these patients, and only 3 patients (7.5%) had these drug-resistant mutations. Clade typing and phylogenetic tree analysis showed HIV-1 subtype C predominance in these patients. Conclusions: Our study showed that higher percentage of HIV drug resistance mutations was found among HIV+TB+ individuals compared with tuberculosis-uninfected patients. Tuberculosis coinfection may be a risk factor for emergence of high frequency of drug resistance mutations. Studies with a larger sample size will help to confirm these findings from the Indian population.


2021 ◽  
Author(s):  
Huangbo Yuan ◽  
Zhenqiu Liu ◽  
Xuefu Wu ◽  
Mingshan Wu ◽  
Qiwen Fang ◽  
...  

Abstract HIV with transmitted drug-resistance (TDR) limits the therapeutic options available for treatment-naive HIV patients. This study aimed to further our understanding of the prevalence and transmission characteristics of HIV with TDR for the application of first-line antiretroviral regimens. A total of 6578 HIV-1 protease/reverse-transcriptase sequences from treatment-naive individuals in China between 2000 and 2016, were obtained from the Los Alamos HIV Sequence Database and were analyzed for TDR. Transmission networks were constructed to determine genetic relationships. The spreading routes of large TDR clusters were identified using a Bayesian phylogeographic framework. TDR mutations were detected in 274 (4.51%) individuals, with 1.40% harboring TDR to nucleoside reverse transcriptase inhibitors, 1.52% to non-nucleoside reverse transcriptase inhibitors, and 1.87% to protease inhibitors. The most frequent mutation was M46L (58, 0.89%), followed by K103N (36, 0.55%), M46I (36, 0.55%), and M184V (26, 0.40%). The prevalence of total TDR initially decreased between 2000 and 2010 (OR = 0.83, 95% CI 0.73–0.95), and then increased thereafter (OR = 1.50, 95% CI 1.13–1.97). The proportion of sequences in a cluster (clustering rate) among HIV with TDR sequences was lower than that of sequences without TDR (40.5% vs. 48.8%, P = 0.023) and increased from 27.3% in 2005–2006 to 63.6% in 2015–2016 (P < 0.001). While most TDR mutations were associated with reduced relative transmission fitness, mutation M46I was associated with higher relative transmission fitness than the wild-type strain. This study identified a low-level prevalence of TDR HIV in China during the last two decades. However, the increasing TDR HIV rate sicn 2010, the persistent circulation of drug resistance mutations, and the expansion of self-sustaining drug resistance reservoirs may compromise the efficacy of antiretroviral therapy programs.


2015 ◽  
Vol 43 (6) ◽  
pp. 3256-3271 ◽  
Author(s):  
Sushama Telwatte ◽  
Anna C. Hearps ◽  
Adam Johnson ◽  
Catherine F. Latham ◽  
Katie Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document