scholarly journals Deep inspiration breath-hold intensity modulated radiation therapy in a large clinical series of 239 left-sided breast cancer patients: a dosimetric analysis of organs at risk doses and clinical feasibility from a single center experience

2019 ◽  
Vol 92 (1101) ◽  
pp. 20190150 ◽  
Author(s):  
Alessandro Testolin ◽  
Stefano Ciccarelli ◽  
Giulia Vidano ◽  
Rossella Avitabile ◽  
Francesca Dusi ◽  
...  

Objective: To evaluate dose to organs at risk, target coverage and treatment compliance in left-sided breast cancer patients (LSBCP) treated with deep inspiration breath-hold (DIBH) and intensity modulated radiation therapy (IMRT) technique in a contest of daily clinical practice. Methods: A total of 280 consecutive LSBCP referred for adjuvant radiotherapy were systematically screened for suitability of DIBH technique. 239 were able to comply with the requirement for DIBH. Whole breast or chest wall were irradiated in DIBH, monitored by Varian RPM™ Respiratory Gating System, and two tangential inverse-planned beams with dynamic dose delivery. Dose prescription was 42.4 Gy/16 fractions in 205 patients and 50 Gy/25 fractions in 34. 23 patients received local and nodal treatment. Boost to tumor bed, of 10 Gy/5 fractions was used in 135 patients. Relevant dose metrics for heart, left anterior descending (LAD) coronary artery, lungs, contralateral breast and planning target volume were retrospectively analyzed. Results: The average mean heart dose (MHD) for all patients was 0.94 Gy and mean maximum LAD dose was 13.82 Gy. MHD and LAD maximum dose were significantly higher in patients treated with conventional fractionation whether expressed in absolute dose (1.44 vs 0.85 Gy, p < 0.0005 and 20.78 vs 12.45 Gy, p < 0.0005 respectively) or in equivalent doses of 2 Gy fractionation (0.88 vs 0.52 Gy, p =< 0.0005 and 17.68 vs 10.63 Gy, p = 0.0002 respectively). In 57 patients (23.8%) the maximum LAD dose was >20 Gy. Mean V20 ipsilateral lung dose was 8.5%. Mean doses of contralateral breast and lung were 0.13 Gy and 0.09 Gy respectively. Mean planning target volume V95% coverage was 96.1%. Compliance rate of DIBH technique was 84.5% (239/280). Conclusion: DIBH and IMRT in daily clinical practice are feasible in high percentage of unselected patients and allows low levels of irradiation of organs at risk without compromising target coverage. However, despite low MHD a significant proportion of patients receives a maximum LAD dose superior to 20 Gy. Advances in knowledge: The value of MHD used exclusively is not able to describe entirely the risk of late heart toxicity, which can be better evaluated with the joint analysis of the maximum dose to LAD region. The vast majority of LSBCP referred to adjuvant radiotherapy in the setting of routine practice are able to comply with the requirement of DIBH.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Speleers ◽  
Max Schoepen ◽  
Francesca Belosi ◽  
Vincent Vakaet ◽  
Wilfried De Neve ◽  
...  

AbstractWe report on a comparative dosimetrical study between deep inspiration breath hold (DIBH) and shallow breathing (SB) in prone crawl position for photon and proton radiotherapy of whole breast (WB) and locoregional lymph node regions, including the internal mammary chain (LN_MI). We investigate the dosimetrical effects of DIBH in prone crawl position on organs-at-risk for both photon and proton plans. For each modality, we further estimate the effects of lung and heart doses on the mortality risks of different risk profiles of patients. Thirty-one patients with invasive carcinoma of the left breast and pathologically confirmed positive lymph node status were included in this study. DIBH significantly decreased dose to heart for photon and proton radiotherapy. DIBH also decreased lung doses for photons, while increased lung doses were observed using protons because the retracting heart is displaced by low-density lung tissue. For other organs-at-risk, DIBH resulted in significant dose reductions using photons while minor differences in dose deposition between DIBH and SB were observed using protons. In patients with high risks for cardiac and lung cancer mortality, average thirty-year mortality rates from radiotherapy-related cardiac injury and lung cancer were estimated at 3.12% (photon DIBH), 4.03% (photon SB), 1.80% (proton DIBH) and 1.66% (proton SB). The radiation-related mortality risk could not outweigh the ~ 8% disease-specific survival benefit of WB + LN_MI radiotherapy in any of the assessed treatments.


2018 ◽  
Vol 52 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Noora Al-Hammadi ◽  
Palmira Caparrotti ◽  
Carole Naim ◽  
Jillian Hayes ◽  
Katherine Rebecca Benson ◽  
...  

Abstract Background During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Patients and methods Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/– regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Results Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/– 2.5 to 3.2 +/– 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/– 1.4 to 48.5 +/– 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/– 4.2 to 3.2 +/– 2.5% (p < 0.001). Heart volumes receiving low (10–20 Gy) and high (30–50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/– 6.7) Gy and 14.8 (+/– 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/– 3.2 vs. 10.6 +/– 2.6 Gy), lung V20Gy (20.5 +/– 7 vs. 19.5 +/– 5.1 Gy) and V95% for the OPTV (95.6 +/– 4.1 vs. 95.2 +/– 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. Conclusions When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.


2021 ◽  
Vol 18 (2) ◽  
Author(s):  
Magdalena Charmacińska ◽  
Sara Styś ◽  
Olga Bąk ◽  
Weronika Kijeska ◽  
Agnieszka Skrobała

Nowotwór piersi jest to nowotwór złośliwy powstający z komórek gruczołu piersiowego, który rozwija się miejscowo w piersi oraz daje przerzuty do węzłów chłonnych i narządów wewnętrznych (płuc, wątroby, kości i mózgu). Ponad 23% zachorowań na nowotwory kobiet w Polsce, jak i na świecie stanowią nowotwory piersi. Na przestrzeni ostatnich lat techniki napromieniania nowotworów piersi ulegają ciągłemu rozwojowi. Celem pracy było poglądowe przedstawienie technik radioterapeutycznych stosowanych w napromienianiu nowotworów piersi, od dwuwymiarowej 2D techniki statycznej poprzez techniki dynamiczne (IMRT technika z modulacją intensywnością dawki (ang. intensity modulated radiation therapy), VMAT technika obrotowa z modulacją intensywności dawki (ang. volumetric modulated arc therapy), aż do techniki DIBH techniki napromieniania na głębokim wstrzymanym wdechu (ang. deep inspiration breath hold). W pracy skupiono się na przedstawieniu realizacji omawianych technik i opisie jak dana technika wpływa na rozkład dawki w planowanej objętości do napromieniania PTV (ang. Planning Target Volume) oraz na dawki w narządach krytycznych w radioterapii nowotworów piersi.


BJR|Open ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 20200067
Author(s):  
Orla Anne Houlihan ◽  
Guhan Rangaswamy ◽  
Mary Dunne ◽  
Christine Rohan ◽  
Louise O'Neill ◽  
...  

Objective: Radiotherapy plays an important role in the management of lymphoma and many patients with lymphoma are cured with treatment. Risk of secondary malignancy and long-term cardiac and pulmonary toxicity from mediastinal radiotherapy exists. Delivery of radiotherapy using a deep inspiration breath-hold (DIBH) technique increases lung volume and has the potential to reduce dose to heart and lungs. We undertook a prospective study to assess the dosimetric differences in DIBH and free breathing (FB) plans in patients requiring mediastinal radiotherapy in clinical practice. Methods: We performed both FB and DIBH planning scans on 35 consecutive patients with mediastinal lymphoma needing radiotherapy. Contours and plans were generated for both data sets and dosimetric data were compared. All patients were planned using volumetric modulated arc therapy (VMAT). Data were compared for FB and DIBH plans with each patient acting as their own control using the related-samples Wilcoxon signed rank test. Results: DIBH significantly reduced lung doses (mean 10.6 vs 11.4Gy, p < 0.0005; V20 16.8 vs 18.3%, p = 0.001) and spinal cord maximum dose (20.6 vs 22.8Gy, p = 0.001). DIBH increased breast V4 (38.5% vs 31.8%, p = 0.006) and mean right breast dose (4.2 vs 3.6Gy, p = 0.010). There was no significant difference in heart doses when the entire study cohort was considered, however, mean heart dose tended to be lower with DIBH for upper mediastinal (UM) tumours (4.3 vs 4.9Gy, p = 0.05). Conclusion: Our study describes the potential benefit of DIBH in a population reflective of clinical practice. DIBH can decrease radiation dose to lungs, heart and spinal cord, however, may increase dose to breasts. DIBH is not always superior to FB, and the clinical significance of differences in dose to organs at risk in addition to the time required to treat patients with DIBH must be considered when deciding the most appropriate radiotherapy technique for each patient. Advances in knowledge: To our knowledge, this is the largest study comparing DIBH and FB planning for patients with lymphoma receiving mediastinal radiotherapy in clinical practice. It demonstrates the impact of an increasingly common radiotherapy technique on dose to organs at risk and the subsequent potential for long-term radiotherapy side-effects.


Sign in / Sign up

Export Citation Format

Share Document