Simulation of the Wind Speed at Different Heights Using Artificial Neural Networks

2000 ◽  
Vol 24 (2) ◽  
pp. 127-136 ◽  
Author(s):  
D.A. Bechrakis ◽  
P.D. Sparis

In this paper, an estimation of the wind speed at different heights with artificial neural networks is presented. It is an alternative way to compute wind shear. This method was tested using pairs of data sets from two measuring stations, installed in different topographic locations. Wind speed simulation is performed with high accuracy. The calculation of the surface friction coefficient from the actual measurements is also compared for wind shear estimation with the typical method in terms of energy output. Results showed that artificial neural networks achieve a better wind speed simulation and wind power estimation at different heights, even in complex terrains.

Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Valerio Lo Brano ◽  
Giuseppina Ciulla ◽  
Mariavittoria Di Falco

The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.


2005 ◽  
Vol 9 (4) ◽  
pp. 313-321 ◽  
Author(s):  
R. R. Shrestha ◽  
S. Theobald ◽  
F. Nestmann

Abstract. Artificial neural networks (ANNs) provide a quick and flexible means of developing flood flow simulation models. An important criterion for the wider applicability of the ANNs is the ability to generalise the events outside the range of training data sets. With respect to flood flow simulation, the ability to extrapolate beyond the range of calibrated data sets is of crucial importance. This study explores methods for improving generalisation of the ANNs using three different flood events data sets from the Neckar River in Germany. An ANN-based model is formulated to simulate flows at certain locations in the river reach, based on the flows at upstream locations. Network training data sets consist of time series of flows from observation stations. Simulated flows from a one-dimensional hydrodynamic numerical model are integrated for network training and validation, at a river section where no measurements are available. Network structures with different activation functions are considered for improving generalisation. The training algorithm involved backpropagation with the Levenberg-Marquardt approximation. The ability of the trained networks to extrapolate is assessed using flow data beyond the range of the training data sets. The results of this study indicate that the ANN in a suitable configuration can extend forecasting capability to a certain extent beyond the range of calibrated data sets.


Sign in / Sign up

Export Citation Format

Share Document