A Study of the Twisted Sweeney-Type Wind Turbine

2003 ◽  
Vol 27 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Yasuyuki Nemoto ◽  
Ayumu Anzai ◽  
Izumi Ushiyama

The late professor Thomas E. Sweeney of Princeton University proposed the concept of vertical-axis wind turbines driven by drag/lift force in 1973. The authors fabricated Twisted-Sweeney type wind turbines, based on the Sweeney type wind turbine, to improve the performance and to enhance its external appearances. From experimental testing of this wind turbine in a wind tunnel, the following conclusions were deduced.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijeet M. Malge ◽  
Prashant Maruti Pawar

Purpose Three different configurations of vertical axis wind turbines (VAWT) were fabricated by changing the storey height and their orientations. The purpose of this study is to find the effect of storey height and orientation on the performance of wind turbines. The multistory VAWT has three storeys. The first configuration had increased middle storey height, with 0–90-0 orientation of blades. Wherein the second turbine had equal storey heights. The third configuration had increased middle storey height with 0–120-240 orientation of blades. The blades were tested numerically and experimentally. Design/methodology/approach In this research work, prototypes of innovative multistory VAWT were built with different configurations and orientations. Three configurations of three-storey VAWT were fabricated by varying the height of storey of turbines. The orientations were made by keeping the storeys orthogonal to each other. Multistory VAWT was tested numerically and experimentally. ANSYS Fluent was used for computational fluid dynamic analysis of VAWT. K-epsilon model was used for numerical analysis of wind turbine. Experimentation was carried out in a wind tunnel for different tip speed ratios (TSR). Findings The three configurations of innovative multistory VAWT were tested numerically and experimentally for different TSR. It has been found that the VAWT with equal storey height had a better performance as compared to the other two configurations with increased middle storey height. The power coefficient of equal storey height VAWT was about 22%, wherein the power coefficient of turbines with reduced upper and lower storey height was between 5%–8% Research limitations/implications The research work of multi-storey VAWT is very novel and original. The findings of the research will contribute to the existing work done in the field of VAWT. This will help other researchers to have insight into the development of multistory VAWT. The effect of storey height and configuration of multi-storey VAWT is studied numerically and experimentally, which concludes that the performance of equal storey is superior as compared to other configurations. Practical implications The multi-storey concept of VAWT was developed to counter the problem of wind direction. The blades of each storey were arranged orthogonal to each other. This helped to harness wind power irrespective of the direction of the wind. This will make the VAWT more sustainable and financially viable for domestic use. Social implications The turbines are specially designed for remotely located housed in rural areas where the power grid is not yet reached. Users can install the turbine on their rooftop and harness wind power of 100 W capacity. This will help them to make their life easy. Originality/value This research work is very original and first of a kind. The multistory concept of the wind turbine was checked for the effect of storey height and orientations of blades on its performance. Different configurations and orientations of the vertical axis were designed and developed for the first time.


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5564
Author(s):  
Rosario Lanzafame ◽  
Stefano Mauro ◽  
Michele Messina ◽  
Sebastian Brusca

The simulation of very small vertical axis wind turbines is often a complex task due to the very low Reynolds number effects and the strong unsteadiness related to the rotor operation. Moreover, the high boundary layer instabilities, which affect these turbines, strongly limits their efficiency compared to micro horizontal axis wind turbines. However, as the scientific interest toward micro wind turbine power generation is growing for powering small stand-alone devices, Vertical Axis Wind Turbines (VAWTs)might be very suitable for this kind of application as well. Furthermore, micro wind turbines are widely used for wind tunnel testing, as the wind tunnel dimensions are usually quite limited. In order to obtain a better comprehension of the fluid dynamics of such micro rotors, in the present paper the authors demonstrate how to develop an accurate CFD 2D model of a micro H-Darrieus wind turbine, inherently characterized by highly unstable operating conditions. The rotor was tested in the subsonic wind tunnel, owned by the University of Catania, in order to obtain the experimental validation of the numerical model. The modeling methodology was developed by means of an accurate grid and time step sensitivity study and by comparing different approaches for the turbulence closure. The hybrid LES/RANS Delayed Detached Eddy Simulation, coupled to a transition model, demonstrated superior accuracy compared to the most advanced unsteady RANS models. Therefore, the CFD 2D model developed in this work allowed for a thorough insight into the unstable fluid dynamic operating conditions of micro VAWTs, leading the way for the performance improvement of such rotors.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
G. Persico ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were carried out to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results highlight that the presently available theoretical correction models do not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used here to explain the different flow features with respect to horizontal axis wind turbines.


2021 ◽  
pp. 0309524X2110618
Author(s):  
Syed Abdur Rahman Tahir ◽  
Muhammad Shakeel Virk

Vertical Axis Wind Turbine (VAWT) can be a promising solution for electricity production in remote ice prone territories of high north, where good wind resources are available, but icing is a challenge that can affect its optimum operation. A lot of research has been made to study the icing effects on the conventional horizontal axis wind turbines, but the literature about vertical axis wind turbines operating in icing conditions is still scarce, despite the importance of this topic. This paper presents a review study about existing knowledge of VAWT operation in icing condition. Focus has been made in better understanding of ice accretion physics along VAWT blades and methods to detect and mitigate icing effects.


2017 ◽  
Vol 199 ◽  
pp. 3176-3181 ◽  
Author(s):  
Andreu Carbó Molina ◽  
Gianni Bartoli ◽  
Tim de Troyer

2021 ◽  
Vol 897 (1) ◽  
pp. 012001
Author(s):  
Oleg Goman ◽  
Andrii Dreus ◽  
Anton Rozhkevych ◽  
Krystyna Heti

Abstract Until recently, vertical-axis wind turbines are less extensively developed in wind energetics. At the same time, there are a number of advantages in turbines of such type like their independence from the change of wind direction, lower levels of aerodynamic and infrasound noises, higher structural reliability (compared to horizontal engines), etc. With these advantages, vertical-axis wind turbines demonstrate promising capacities. Inter alia, the productiveness of such turbines can be refined through the aerodynamic improvement of the structure and comprehensive optimization of the rotor geometry. The main purpose of the presented paper is to aerodynamically improve vertical wind turbine in order to increase the efficiency of wind energy conversion into electricity. Within the framework of the classical theory of impulses, this article presents a study of the effect of variation in Reynolds number on the general energy characteristics of a vertical-axis wind turbine with two blades. The integral approach makes it possible to use a single-disk impulse model to determine the main specific indicators of the system. The power factor was calculated based on the obtained value of the shaft torque factor, which in turn was determined by numerically integrating the total torque generated by the wind turbine. To calculate the test problem, we used the classic NACA airfoils: 0012, 0015, 0018 and 0021. The proposed calculation algorithm makes it possible not to indicate the Reynolds number and corresponding aerodynamic coefficients at the beginning of the calculation, but to recalculate it depending on the relative speed, position of the airfoil and the linear speed of the airfoil around the circumference. Proposed modern design techniques can be helpful for optimization of vertical wind turbines.


2017 ◽  
Vol 9 (3) ◽  
pp. 033302 ◽  
Author(s):  
Silvana Tourn ◽  
Jordi Pallarès ◽  
Ildefonso Cuesta ◽  
Uwe Schmidt Paulsen

Author(s):  
Zhenlong Wu ◽  
Yihua Cao

Rainfall is a common meteorological condition that wind turbines may encounter and by which their performance may be affected. This paper comprehensively investigates the effects of rainfall on a NACA 0015 airfoil which is commonly used in vertical axis wind turbines. A CFD-based Eulerian–Lagrangian multiphase approach is proposed to study the static, rotating, and oscillating performances of the NACA 0015 airfoil in rainy conditions. It is found that for the different airfoil movements, the airfoil performance can seriously be deteriorated in the rain condition. Rain also causes premature boundary layer separations and more severe flow recirculations than in the dry condition. These findings seem to be the first open reports on rain effects on wind turbine performance and should be of some significance to practical design.


2018 ◽  
Vol 42 (2) ◽  
pp. 97-107 ◽  
Author(s):  
D Cevasco ◽  
M Collu ◽  
CM Rizzo ◽  
M Hall

Despite several potential advantages, relatively few studies and design support tools have been developed for floating vertical axis wind turbines. Due to the substantial aerodynamics differences, the analyses of vertical axis wind turbine on floating structures cannot be easily extended from what have been already done for horizontal axis wind turbines. Therefore, the main aim of the present work is to compare the dynamic response of the floating offshore wind turbine system adopting two different mooring dynamics approaches. Two versions of the in-house aero-hydro-mooring coupled model of dynamics for floating vertical axis wind turbine (FloVAWT) have been used, employing a mooring quasi-static model, which solves the equations using an energetic approach, and a modified version of floating vertical axis wind turbine, which instead couples with the lumped mass mooring line model MoorDyn. The results, in terms of mooring line tension, fatigue and response in frequency have been obtained and analysed, based on a 5 MW Darrieus type rotor supported by the OC4-DeepCwind semisubmersible.


Sign in / Sign up

Export Citation Format

Share Document