Offshore Wind Power Assessment on the East Coast of Saudi Arabia

2005 ◽  
Vol 29 (5) ◽  
pp. 409-419 ◽  
Author(s):  
Shafiqur Rehman

This paper, to the best of author's knowledge, presents the first wind resource assessment for offshore-wind energy off the mainland coasts of Saudi Arabia, despite the onshore wind resource being known. The study utilized wind speed data from, in effect, an offshore meteorological station to study the annual and seasonal variation of wind speed, wind speed frequency distribution, energy yield and consequent opportunity for reduction in green house gases (GHG) emissions. These results were compared with contemporaneous data from a mainland location ∼ 10 km inland at the same longitude Energy yields were calculated using HOMER and RetScreen models. The annual mean wind measured at Abu Ali Island, the offshore location, was 5.43 m/s. This is larger than the 4.9 m/s measured over the same period at Abu Kharuf, the nearby inland location. Larger wind speeds were found in winter months than in summer months at both locations. At Abu Ali Island, the power of the wind could be extracted for 75% of the time at hub-height of 60 meters using modern wind machines of cut-in-speed 4 m/s, in comparison with 60% of time at Abu Kharuf. The prevailing wind direction was found to be North (N), North West (NNW) and North East (NNE).

2017 ◽  
Vol 2 (1) ◽  
pp. 211-228 ◽  
Author(s):  
Bjarke T. Olsen ◽  
Andrea N. Hahmann ◽  
Anna Maria Sempreviva ◽  
Jake Badger ◽  
Hans E. Jørgensen

Abstract. Understanding uncertainties in wind resource assessment associated with the use of the output from numerical weather prediction (NWP) models is important for wind energy applications. A better understanding of the sources of error reduces risk and lowers costs. Here, an intercomparison of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated using a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft (< 4 %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction.


2022 ◽  
pp. 0309524X2110693
Author(s):  
Sajeer Ahmad ◽  
Muhammad Abdullah ◽  
Ammara Kanwal ◽  
Zia ul Rehman Tahir ◽  
Usama Bin Saeed ◽  
...  

The growth rate of offshore wind is increasing due to technological advancement and reduction in cost. An approach using mast measured data at coastline and reanalysis data is proposed for offshore wind resource assessment, especially for developing countries. The evaluation of fifth generation European Reanalysis (ERA5) data was performed against measured data using statistical analysis. ERA5 data slightly underestimates wind speed and wind direction with percentage bias of less than 1%. Wind resource assessment of region in Exclusive Economic Zone (EEZ) of Pakistan was performed in terms of wind speed and Wind Power Density (WPD). The range of monthly mean wind speed and WPD in the region was 4.03–8.67 m/second and 73–515 W/m2 respectively. Most-probable wind speed and dominating wind direction on corners and center of the region were found using probability distributions and wind rose diagrams respectively. Most-probable wind speed ranges 4.41–7.64 m/second and dominating wind direction is southwest.


2021 ◽  
Vol 298 ◽  
pp. 117245
Author(s):  
Basem Elshafei ◽  
Alfredo Peña ◽  
Dong Xu ◽  
Jie Ren ◽  
Jake Badger ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 1-10
Author(s):  
D. Pullinger ◽  
A. Ali ◽  
M. Zhang ◽  
N. Hill ◽  
T. Crutchley

This study addresses two key objectives using operational performance data from most of the Round 1 wind farms connected to the grid in South Africa: benchmarking of wind farm performance and validation of the pre-construction energy yield assessments. These wind farms were found to perform in line with internationally reported levels of wind farm availability, with a mean energy-based availability of 97.8% during the first two years of operation. The pre-construction yield assessments used for financing in 2012 were found to over-predict project yield (P50) by 4.9%. This was consistent with other validation studies for Europe and North America. It was also noted that all projects exceed the pre-construction P90 estimate. The reasons for this discrepancy were identified, with the largest cause of error being wind flow and wake-modelling errors. Following a reassessment using up to date methodologies from 2018, the mean bias in pre-construction predictions was 1.4%.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 254
Author(s):  
Minhyeop Kang ◽  
Kyungnam Ko ◽  
Minyeong Kim

An atmosphere–ocean coupled model is proposed as an optimal numerical prediction method for the offshore wind resource. Meteorological prediction models are mainly used for wind speed prediction, with active studies using atmospheric models. Seawater mixing occurring at sea due to solar radiation and wind intensity can significantly change the sea surface temperature (SST), an important variable for predicting wind resources and energy production, considering its wind effect, within a short time. This study used the weather research forecasting and ocean mixed layer (WRF-OML) model, an atmosphere–ocean coupled model, to reflect time-dependent SST and sea surface fluxes. Results are compared with those of the WRF model, another atmospheric model, and verified through comparison with observation data of a meteorological mast (met-mast) at sea. At a height of 94 m, the wind speed predicted had a bias and root mean square error of 1.09 m/s and 2.88 m/s for the WRF model, and −0.07 m/s and 2.45 m/s for the WRF-OML model, respectively. Thus, the WRF-OML model has a higher reliability. In comparing to the met-mast observation data, the annual energy production (AEP) estimation based on the predicted wind speed showed an overestimation of 15.3% and underestimation of 5.9% from the WRF and WRF-OML models, respectively.


2019 ◽  
Vol 232 ◽  
pp. 111316 ◽  
Author(s):  
Merete Badger ◽  
Tobias Ahsbahs ◽  
Petr Maule ◽  
Ioanna Karagali

Author(s):  
Houdayfa Ounis ◽  
Nawel Aries

The present study aims to present a contribution to the wind resource assessment in Algeria using ERA-Interim reanalysis. Firstly, the ERA-Interim reanalysis 10 m wind speed data are considered for the elaboration of the mean annual 10 m wind speed map for a period starting from 01-01-2000 to 31-12-2017. Moreover, the present study intends to highlight the importance of the descriptive statistics other than the mean in wind resource assessment. On the other hand, this study aims also to select the proper probability distribution for the wind resource assessment in Algeria. Therefore, nine probability distributions were considered, namely: Weibull, Gamma, Inverse Gaussian, Log Normal, Gumbel, Generalized Extreme Value (GEV), Nakagami, Generalized Logistic and Pearson III. Furthermore, in combination with the distribution, three parameter estimation methods were considered, namely, Method of Moment, Maximum Likelihood Method and L-Moment Method. The study showed that Algeria has several wind behaviours due to the diversified topographic, geographic and climatic properties. Moreover, the annual mean 10 m wind speed map showed that the wind speed varies from 2.3 to 5.3 m/s, where 73% of the wind speeds are above 3 m/s. The map also showed that the Algerian Sahara is windiest region, while, the northern fringe envelopes the lowest wind speeds. In addition, it has been shown that the study of the mean wind speeds for the evaluation of the wind potential alone is not enough, and other descriptive statistics must be considered. On the other hand, among the nine considered distribution, it appears that the GEV is the most appropriate probability distribution. Whereas, the Weibull distribution showed its performance only in regions with high wind speeds, which, implies that this probability distribution should not be generalized in the study of the wind speed in Algeria.


2008 ◽  
Vol 32 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Hanan Al Buflasa ◽  
David Infield ◽  
Simon Watson ◽  
Murray Thomson

The geographical distribution of wind speed (the wind atlas) for the kingdom of Bahrain is presented, based on measured data and on calculations undertaken using WAsP,. The data used were recorded by the Meteorological Directorate at a weather station situated at Bahrain International Airport, taken on an hourly basis for a period of time extended for ten years. These data indicate an annual mean wind speed of 4.6 m/s at 10 m height and mean Weibull scale and shape parameters C and k of 5.2 m/s and 1.9 respectively. At a typical wind turbine hub height of sixty metres, these values are extrapolated to 6.9 m/s, 7.8 m/s and 1.8 respectively, which suggests that the area has a good wind resource. The wind atlas shows that several locations in the less populated central and southern regions of the main island of the archipelago of Bahrain are potentially suitable for wind energy production.


Wind is random in nature both in space and in time. Several technologies are used in wind resource assessment (WRA).The appropriate probability distribution used to calculate the available wind speed at that particular location and the estimation of parameters is the essential part in installing wind farms. The improved mixture Weibull distribution is proposed model which is the mixture of two and three parameter Weibull distribution with parameters including scale, shape, location and weight component. The basic properties of the proposed model and estimation of parameters using various methods are discussed.


Sign in / Sign up

Export Citation Format

Share Document