Book Review: Ethical Adaptation to Climate Change — Human Virtues of the Future

2013 ◽  
Vol 24 (5) ◽  
pp. 915-916
Author(s):  
Andrew McKillop
Facilities ◽  
2015 ◽  
Vol 33 (11/12) ◽  
pp. 701-715 ◽  
Author(s):  
Keith Jones ◽  
Api Desai ◽  
Mark Mulville ◽  
Aled Jones

Purpose – The purpose of this paper is to present an alternative approach to facilities and built asset management adaptation planning to climate change based on a hybrid backcasting/forecasting model. Backcasting envisions a future state and examines alternative “pathways of approach” by looking backwards from the future state to the present day. Each pathway is examined in turn to identify interventions required for that pathway to achieve the future state. Each pathway is reviewed using forecasting tools and the most appropriate is selected. This paper describes the application of this approach to the integration of climate change adaptation plans into facilities and built asset management. Design/methodology/approach – The researchers worked with various stakeholders as part of a participatory research team to identify climate change adaptations that may be required to ensure the continued performance of a new educational building over its life cycle. The team identified 2020, 2040 and 2080 year end-goals and assessed alternative pathways of approach. The most appropriate pathways were integrated into the facilities and built asset management plan. Findings – The paper outlines a conceptual framework for formulating long term facilities and built asset management strategies to address adaptation to climate change. Research limitations/implications – The conceptual framework is validated by a single research case study, and further examples are needed to ensure validity of the approach in different facilities management contexts. Originality/value – This is the first paper to explore backcasting principles as part of facilities and built asset management planning.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2018 ◽  
Vol 12 (1) ◽  
pp. 30-31
Author(s):  
Torben Rick
Keyword(s):  

This work is a book review considering the title Curating the Future: Museums, Communities, and Climate Change edited by Jennifer Newell, Libby Robin, and Kristen Wehner.


2021 ◽  
Author(s):  
Antonio Sánchez Benítez ◽  
Thomas Jung ◽  
Helge Goessling ◽  
Felix Pithan ◽  
Tido Semmler

<p>Under the current global warming trend, heatwaves are becoming more intense, frequent, and longer-lasting; and this trend will continue in the future. In this context, the recent 2019 summer was exceptionally hot in large areas of the Northern Hemisphere, with embedded heatwaves, as for example the June and July 2019 European events, redrawing the temperature record map in western Europe. Large-scale dynamics (associated with blockings or subtropical ridges) play a key role in explaining these-large scale events.</p><p>Conceptually, global warming can be split into two different contributions: Dynamic and thermodynamic changes. Whereas dynamic changes remain highly uncertain, some thermodynamic changes can be quantified with higher confidence. We exploit this concept by studying how these recent European heatwaves would have developed in a pre-industrial climate and how it would develop in the future for 1.5, 2 and 4 ºC warmer climates (storyline scenarios). To do so, we employ the spectral nudging technique with AWI-CM (CMIP6 model, a combination of ECHAM6 AGCM + FESOM Sea Ice-Ocean Model). Large-scale dynamics are prescribed by reanalysis data (ERA5). Meanwhile, the model is run for different boundary conditions corresponding to preindustrial and future climates along the SSP370 forcing scenario. This approach can be useful to help understand and communicate what climate change will mean to people’s life and hence facilitate effective decision-making regarding adaptation to climate change, as we are quantifying how recent outstanding events would be modified by our climate action. </p><p>Temperatures during the heatwaves often increase twice as much as global mean temperatures, especially in a future 4 ºC warmer climate. In this future climate, maximum temperatures can locally reach 50ºC in many western Europe countries. Nighttime temperatures would be similar to the daytime temperatures in a preindustrial world. The global warming amplification can be partly explained by a robust soil drying in the future 4 ºC warmer climate (exacerbated due to the June 2019 heatwave) which is transmitted to a robust increase in Bowen ratio. Importantly, by design of our study, this response occurs without any changes in atmospheric circulation.</p>


Sign in / Sign up

Export Citation Format

Share Document