Allen Thompson and Jeremy Bendik-Keymer, editors. Ethical Adaptation to Climate Change: Human Virtues of the Future

2013 ◽  
Vol 10 (1) ◽  
pp. 124-127
Author(s):  
Tim Christion Myers ◽  
Facilities ◽  
2015 ◽  
Vol 33 (11/12) ◽  
pp. 701-715 ◽  
Author(s):  
Keith Jones ◽  
Api Desai ◽  
Mark Mulville ◽  
Aled Jones

Purpose – The purpose of this paper is to present an alternative approach to facilities and built asset management adaptation planning to climate change based on a hybrid backcasting/forecasting model. Backcasting envisions a future state and examines alternative “pathways of approach” by looking backwards from the future state to the present day. Each pathway is examined in turn to identify interventions required for that pathway to achieve the future state. Each pathway is reviewed using forecasting tools and the most appropriate is selected. This paper describes the application of this approach to the integration of climate change adaptation plans into facilities and built asset management. Design/methodology/approach – The researchers worked with various stakeholders as part of a participatory research team to identify climate change adaptations that may be required to ensure the continued performance of a new educational building over its life cycle. The team identified 2020, 2040 and 2080 year end-goals and assessed alternative pathways of approach. The most appropriate pathways were integrated into the facilities and built asset management plan. Findings – The paper outlines a conceptual framework for formulating long term facilities and built asset management strategies to address adaptation to climate change. Research limitations/implications – The conceptual framework is validated by a single research case study, and further examples are needed to ensure validity of the approach in different facilities management contexts. Originality/value – This is the first paper to explore backcasting principles as part of facilities and built asset management planning.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2021 ◽  
Author(s):  
Antonio Sánchez Benítez ◽  
Thomas Jung ◽  
Helge Goessling ◽  
Felix Pithan ◽  
Tido Semmler

<p>Under the current global warming trend, heatwaves are becoming more intense, frequent, and longer-lasting; and this trend will continue in the future. In this context, the recent 2019 summer was exceptionally hot in large areas of the Northern Hemisphere, with embedded heatwaves, as for example the June and July 2019 European events, redrawing the temperature record map in western Europe. Large-scale dynamics (associated with blockings or subtropical ridges) play a key role in explaining these-large scale events.</p><p>Conceptually, global warming can be split into two different contributions: Dynamic and thermodynamic changes. Whereas dynamic changes remain highly uncertain, some thermodynamic changes can be quantified with higher confidence. We exploit this concept by studying how these recent European heatwaves would have developed in a pre-industrial climate and how it would develop in the future for 1.5, 2 and 4 ºC warmer climates (storyline scenarios). To do so, we employ the spectral nudging technique with AWI-CM (CMIP6 model, a combination of ECHAM6 AGCM + FESOM Sea Ice-Ocean Model). Large-scale dynamics are prescribed by reanalysis data (ERA5). Meanwhile, the model is run for different boundary conditions corresponding to preindustrial and future climates along the SSP370 forcing scenario. This approach can be useful to help understand and communicate what climate change will mean to people’s life and hence facilitate effective decision-making regarding adaptation to climate change, as we are quantifying how recent outstanding events would be modified by our climate action. </p><p>Temperatures during the heatwaves often increase twice as much as global mean temperatures, especially in a future 4 ºC warmer climate. In this future climate, maximum temperatures can locally reach 50ºC in many western Europe countries. Nighttime temperatures would be similar to the daytime temperatures in a preindustrial world. The global warming amplification can be partly explained by a robust soil drying in the future 4 ºC warmer climate (exacerbated due to the June 2019 heatwave) which is transmitted to a robust increase in Bowen ratio. Importantly, by design of our study, this response occurs without any changes in atmospheric circulation.</p>


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
Chul-Hee Lim ◽  
Hyun-Jun Kim

Recent cases of climate disasters such as the European floods in 2021 and Korea’s longest rainy season in 2020 strongly imply the importance of adaptation to climate change. In this study, we performed a numerical prediction on how much climate change adaptation factors related to forest policy can reduce climate disasters such as landslides. We focused on the landslide in Korea and applied a machine learning model reflecting adaptive indicators in the representative concentration pathway 8.5 climate scenario. The changes in the landslide probability were estimated using the Random Forest model, which estimated the landslide probability in the baseline period (2011) with excellent performance, and the spatial adaptation indicators used in this study contributed approximately 20%. The future landslide risk predicting indicated a significant increase in the Very High and High risk areas, especially in 2092. The application of the forest-related adaptation indices based on the policy scenario showed that in 2050, the effect was not pronounced, but in 2092, when the risk of landslides was much higher, the effect increased significantly. In particular, the effect was remarkable in the Seoul metropolitan and southern coastal regions. Even with the same adaptive capacity, it exerted a larger effect on the enhanced disasters. Our results suggest that the enhancement of adaptive capacity can reduce landslide risk up to 70% in a Very High risk region. In conclusion, it implies an importance to respond to the intensifying climate disasters, and abundant follow-up studies are expected to appear in the future.


2007 ◽  
Vol 4 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Wolfgang Sterk ◽  
Rie Watanabe ◽  
Herniann E. Ott ◽  
Bettina Wittneben

AbstractComing at the end of a year where public awareness of climate change had reached unprecedented heights, there was much hope by the general public that the United Nations climate change conference in Nairobi would be characterised by a renewed sense of urgency and seriousness. However, although a sense of urgency was present in many delegates individually, the conference proceeded with its usual diplomatic ritual at an almost surrealistic slow pace, apparently unaffected by time pressure. While it did see some progress on important issues for developing countries such as the Adaptation Fund, the Nairobi Work Programme on Impacts, Vulnerability, and Adaptation to Climate Change, and the Clean Development Mechanism (CDM), on questions regarding the future of the regime it proved to be at best a confidence-building session that served to hear further views. More serious work on the future of the regime can — and must — therefore be expected of the next Conferences of the Parties.


1991 ◽  
Vol 18 (4) ◽  
pp. 313-322 ◽  
Author(s):  
Norman J. Rosenberg ◽  
Pierre R. Crosson

In a study that was recently completed at Resources for the Future, the impacts of a future change in climate on the total economy of the Missouri–Iowa–Nebraska–Kansas (MINK) region were assessed, as were the possibilities of response (including adaptation) to the climatic change. Impacts on agriculture, forestry, water resources, and energy, were emphasized. The study was future-oriented, focusing on the year 2030, by which time the effects of ‘greenhouse’ warming may be felt. The records of the AD 1930s were used to provide an analog of the kinds of climate change (warmer and drier) that climate models predict will occur in the MINK region.Our results indicate that impacts of the projected climate change on agriculture, at least in the future, are expected to be profound, but that likely-to-be available technologies should facilitate substantial adaptation; that current water-resource limitations in the region would be exacerbated and lead to an eastward shift in irrigation; that impacts on forestry would be severe, and that opportunities for forestry adaptation would be very limited unless biomass production were to become economically viable; and that the net impacts on energy supply and demand would be small and adaptation to them relatively simple.Climate change in the MINK region could, of course, go somewhat beyond the conditions represented by the AD 1930s analog, in which case the findings of this study may be too optimistic. However, the future-oriented ‘MINK methodology’ is not scenario-dependent, and can be used to test other, more severe (or benign), scenarios as well. Further, the capacity for adaptation to climate change demonstrated in this study, may remain applicable even in more stringent circumstances.


Sign in / Sign up

Export Citation Format

Share Document