scholarly journals Calmodulin inhibitors increase the affinity of Merocyanine 540 for boar sperm membrane under non-capacitating conditions

2018 ◽  
Vol 64 (5) ◽  
pp. 445-449 ◽  
Author(s):  
Lauro GONZÁLEZ-FERNÁNDEZ ◽  
Beatriz MACÍAS-GARCÍA ◽  
Violeta CALLE-GUISADO ◽  
Luis Jesús GARCÍA-MARÍN ◽  
María Julia BRAGADO
1990 ◽  
Vol 10 (2) ◽  
pp. 131-139
Author(s):  
Oyewole Adeyemo ◽  
E. O. Okegbile ◽  
O. O. Olorunsogo

For the development of immunological contraception, attention is being concentrated on the possibility of using a sperm membrane antigen. Boar sperm membrane was extracted with triton-X 100 and fractionated by Sephadex G-150 column chromatography. The glycosylated and nonglycosylated portions of protein peaks from the gel filtration were obtained by fractionating on concanavalin A-Sepharose and eluting the bound protein with 0.3 M methyl mannoside. A glycosylated fraction was found to induce sperm agglutinating antibodies in rabbit. The partially purified protein has a molecular weight of 30 kilodaltons, as determined by sodium dodecyl polyaccyrlamide gel electrophoresis. Further work is planned on the histochemical determination of the origin of this protein and species cross-activity of the antibody.


1993 ◽  
Vol 36 (3) ◽  
pp. 382-389 ◽  
Author(s):  
Edward C. Yurewicz ◽  
Beverley A. Pack ◽  
D. Randall Armant ◽  
Anthony G. Sacco

2016 ◽  
Vol 94 (5) ◽  
pp. 1906-1912 ◽  
Author(s):  
M. A. Torres ◽  
G. M. Ravagnani ◽  
D. F. Leal ◽  
S. M. M. K. Martins ◽  
B. B. D. Muro ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 140
Author(s):  
E. M. Walters ◽  
J. D. Benson ◽  
A. Rieke ◽  
J. K. Graham ◽  
J. K. Critser

Difficulties associated with the cryopreservation of boar sperm include their sensitivities to osmotic stresses and chilling sensitivity. We investigated the effects of cholesterol-loaded cyclodextrin (CLC) on boar sperm motility and membrane integrity following exposure to various osmolalities. Samples were collected using the gloved hand method from crossbred boars, and ejaculates having greater than 75% motility were extended 1:3 with Androhep (Minitube Inc., Verona, WI) for this study. Samples were centrifuged at 700g for 5 min, and the resulting pellets were resuspended to 1.2 × 108 cells mL–1 in Androhep. Samples were then treated with 0, 1.5, or 3.0 mg of CLC/1.2 × 108 cells mL–1 for 10 min at room temperature. In experiment 1, samples were aliquoted into 1.5-mL centrifuge tubes, centrifuged at 700g for 5 min and the sperm exposed to Dulbecco’s PBS at different osmolalities for 5 min before being returned to 300 mOsm by adding Dulbecco’s PBS solutions at differing osmolalities. After returning the sperm to isosmotic conditions, sperm motility was analyzed. In experiment 2, samples were treated as in experiment 1 and following exposure to the various osmolalities, sperm were stained with Alexa 488-PNA and propidium iodide to determine sperm membrane integrity. Ten thousand sperm per treatment were analyzed by flow cytometry. Data were analyzed by standard ANOVA. The CLC-treated sperm (normalized means ± SEM; 33 ± 16, 80 ± 8, 86 ± 5, 100, 64 ± 4, 7 ± 3, 0 ± 0, respectively) exhibited greater percentages of motile cells following hypo-isosmotic exposure than control sperm (4 ± 1.6, 33 ± 9.6, 84 ± 7.1, 100, 37 ± 5.5, 3 ± 1.6, 0 ± 0, respectively), and there was a tendency for CLC-treated sperm (P = 0.0225) to maintain motility following hyper-isosmotic exposure. In addition, CLC-treated sperm (87 ± 4, 93 ± 1, 95 ± 1, 93 ± 2, 88 ± 4, 83 ± 3, 41 ± 9, respectively; P < 0.05) maintained greater percentages of membrane integrity following treatment with anisosmotic solutions compared with controls (29 ± 8, 63 ± 10, 81 ± 7, 92 ± 3, 73 ± 8, 44 ± 5, 21 ± 9, respectively). Using a combination of these osmotic tolerance data with previously published boar sperm membrane permeability characteristics, we mathematically modeled the number of steps needed for the addition or removal of cryoprotectants. Computer simulations indicate that an abrupt addition of 1 m glycerol will cause boar sperm to exceed their osmotic tolerance limits unless they are treated with 3 mg of CLC. Moreover, the addition of 1 m EG causes boar sperm to exceed all osmotic tolerance limits and therefore, the addition and removal of EG requires multiple-step protocols. However, the addition and removal of 1 m DMSO maintains volume excursions well within the osmotic tolerance limits with the addition of cholesterol (1.5 and 3 mg). Empirical data for addition of CPA have shown similar results as seen with the computer simulation. These data support the hypothesis that adding cholesterol to porcine sperm broadens their osmotic tolerance limits and potentially provide a mechanism to increase post-thaw survival of porcine sperm.


2005 ◽  
Vol 64 (1) ◽  
pp. 191-201 ◽  
Author(s):  
M. Spinaci ◽  
M. De Ambrogi ◽  
S. Volpe ◽  
G. Galeati ◽  
C. Tamanini ◽  
...  

1985 ◽  
Vol 11 (4) ◽  
pp. 335-348 ◽  
Author(s):  
Marianne Klint ◽  
Karin Sege ◽  
Bengt Curman ◽  
Leif Plöen ◽  
Per A. Peterson

Reproduction ◽  
2018 ◽  
Vol 155 (1) ◽  
pp. 25-36
Author(s):  
Yuanxian Wang ◽  
Yihua Gu ◽  
Huihui Gao ◽  
Yao Gao ◽  
Jianhang Shao ◽  
...  

Sialic acid (SA), which usually occupies the terminal position of oligosaccharide chains in mammalian spermatozoa, has important functions in fertilization. Compared with other methods, such as lectin probing, boronic acid could recognize and bind SA with a higher affinity and specificity at pH 6.9. In this study, two boronic acid carriers, 3-aminophenylboronic acid-labeled fluorescent latex (CML-APBA) and magnetic beads (CMM-APBA were applied to explore surface sialylation profile and sialoglycoproteins of the boar sperm. There are three binding sections of CML-APBA on the head of ejaculated sperm: acrosomal region, equatorial segment and the head posterior, which are the major regions undergoing sialylation. After capacitation in vitro, two major binding patterns of CML-APBA exists on sperm head. On some spermatozoa, sialylation exists on the equatorial segment and the posterior head, whilst on other spermatozoa, sialylation occurs on the acrosomal region and equatorial segment. Flow cytometry analysis suggested that the level of sialylation on boar sperm membrane decreases after capacitation. Furthermore, using CMM-APBA, we pulled down sialylated proteins from spermatozoa. Among them, two decapacitation factors associating on sperm surface, AWN and PSP-1, were identified. The levels of the two proteins reduced during capacitation, which might contribute to the decrease of sialylation on boar sperm surface.


1983 ◽  
pp. 147-150
Author(s):  
Marianne Klint ◽  
Anita Fridberger ◽  
Per A. Peterson ◽  
Leif Plöen

Sign in / Sign up

Export Citation Format

Share Document