scholarly journals Differential nuclear staining and cell count of trophectoderm and inner cell mass of bovine blastocyst fertilized in vitro by double fluorochrome dye technique.

1990 ◽  
Vol 36 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Setsuo IWASAKI ◽  
Yutaka YOSHIDA ◽  
Seiki WATANABE ◽  
Tatsuo NAKAHARA
2006 ◽  
Vol 18 (5) ◽  
pp. 551 ◽  
Author(s):  
Michael Hoelker ◽  
Friedrich Schmoll ◽  
Hendrik Schneider ◽  
Franca Rings ◽  
Markus Gilles ◽  
...  

The aim of the present study was to explore whether the blastocyst diameter and the zona thickness at 168 h after fertilisation are useful parameters to predict quality and viability of bovine in-vitro-produced (IVP)-embryos. Although significant (P < 0.05), the blastocyst diameter at 168 h correlated only poorly with the total number of cells (R2 = 0.13) and with the number of trophectoderm (TE) cells (R2 = 0.17). Hatched blastocysts (n = 66) at 216 h had a significantly greater mean diameter at 168 h (194.8 ± 16.8 µm) compared with either blastocysts that had started but not finished hatching at 216 h (n = 26, 178.4 ± 16.7 µm) or failed to commence hatching (n = 136, 162.7 ± 12.9 µm). Transfer of 101 IVP blastocysts to synchronised recipients resulted in the birth of 38 calves (38%). There were significantly more bull calves born than cow calves (P < 0.05), but this was not correlated with blastocyst diameter or zona thickness at 168 h. There was also no correlation between the diameter of blastocysts or the zona thickness at 168 h and parameters of subsequent developmental characteristics, including rates of pregnancy, resorptions and abortions, pregnancy duration, delivery to term and birthweight. Overall, the present results indicate that the blastocyst diameter and the zona thickness at 168 h are good predictors for subsequent hatching ability in vitro, but not for the number of TE cells, inner cell mass cells or total cells and neither for subsequent developmental characteristics after transfer to recipients.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


2021 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Abstract Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE) and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8 and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


2005 ◽  
Vol 288 (5) ◽  
pp. E845-E851 ◽  
Author(s):  
L. J. Edwards ◽  
K. L. Kind ◽  
D. T. Armstrong ◽  
J. G. Thompson

We have developed a protocol using recombinant human follicle-stimulating hormone (rhFSH) to induce ovarian stimulation in the mouse to investigate its impact on preimplantation embryo development. Embryos were collected from adult female C57Bl/6 × CBA F1 mice treated with rhFSH (0, 2.5, 5.0, 10.0, or 20.0 IU) or 5 IU equine chorionic gonadotropin (eCG). Embryos were also recovered from nontreated control mice. Embryos were cultured in vitro for 88 h, and the stage of development was morphologically assessed. The allocation of cells to the inner cell mass or trophectoderm of blastocysts was determined by differential nuclear staining. The expression of insulin-like growth factor 2 (IGF-II), the insulin-like growth factor receptor (IGF-II receptor), and vascular endothelial growth factor (VEGF) in blastocysts was measured by real-time RT-PCR. Blastocyst development was reduced in the 10 (72.3 ± 5.1%) and 20 (77.3 ± 5.6%) IU rhFSH groups compared with control embryos (96.7 ± 1.0%). The number of inner cell mass cells was reduced ( P < 0.001) in the 5, 10, and 20 IU rhFSH groups and the eCG group compared with control embryos. We did not find any effect of rhFSH treatment on IGF-II, IGF-II receptor, or VEGF expression in blastocysts compared with the control group. eCG treatment, however, significantly increased the expression of IGF-II in blastocysts. These results indicate that ovarian stimulation with rhFSH impairs the in vitro development of preimplantation mouse embryos, and these results may have potential implications for clinical ovarian stimulation during infertility treatment and subsequent embryo quality.


2018 ◽  
Author(s):  
V Najafzadeh ◽  
H Henderson ◽  
R Martinus ◽  
B Oback

ABSTRACTIncreasing evidence suggests that pluripotency is a metabolically specialised state. In mouse, inner cell mass (ICM) cells and ICM-derived pluripotent stem cells (PSCs) critically depend on catabolising the amino acid threonine, while human PSCs require leucine, lysine, methionine or tryptophan. However, little is known about the specific amino acid requirements of putative pluripotent cells in bovine. We selectively depleted candidate essential amino acids (EAAs) from individually cultured bovine embryos to study their role in blastocyst development. Depleting one (-T, -M), two (-MT, -CM, -CT, -IL, -IK, -KL) or three (-CMT, -IKL) EAAs from chemically defined protein-free culture medium did not affect the morula-to-blastocyst transition from day five (D5) to D8 in vitro. By contrast, removing six (-CIKLMT, -FHRYVW), nine (+CMT, +IKL), eleven EAAs (+T, +M) or all twelve EAAs increasingly impaired blastocyst development. As no clear candidate emerged from this targeted screen, we focussed on threonine dehydrogenase (TDH), which catalyses threonine catabolism. TDH mRNA and protein was present at similar levels in trophectoderm (TE) and ICM but absent from several adult somatic tissues. We then treated morulae with an inhibitor (Qc1) that blocks TDH from catabolising threonine. Continuous exposure to Qc1 reduced total and high-quality blastocyst development from 37% to 26% and 18% to 8%, respectively (P<0.005). This was accompanied by ∼2-fold decrease in ICM, TE and total cell numbers (P<0.005), which was due to increased autophagy (P<0.05). At the same time, ICM-(NANOG) and TE-restricted (KRT8) genes were up-and down-regulated, respectively (P<0.05). In summary, bovine blastocyst viability depended on TDH-mediated threonine catabolism. However, ICM and TE cells did not metabolically differ in this regard, highlighting species-specific connections between metabolism and pluripotency regulation in mouse vs cattle.


2018 ◽  
Vol 30 (1) ◽  
pp. 202
Author(s):  
J. O. Secher ◽  
N. Hashem ◽  
J. H. Pryor ◽  
C. R. Long ◽  
J. Docherty ◽  
...  

Optimal bovine in vitro oocyte maturation (IVM) is a prerequisite for subsequent optimal blastocyst rates. Ovum pick-up (OPU), by which cumulus–oocyte complexes (COC) are collected in vivo, is performed outside a laboratory and often requires IVM to take place during transportation from the farm to the IVF laboratory. Hashem et al. (2017 Reprod. Fertil. Dev. 29, 179) demonstrated that blastocyst rates are affected by type of vial (glass v. plastic), number of COC per vial, and volume of medium per vial. This was achieved by maturing more than 2500 COC from slaughterhouse material under contrasting conditions, followed by standardised IVF and in vitro culture (IVC) and observation of blastocyst rates, morphology (1: poor; 2: good; 3: excellent), and kinetics (1: blastocyst; 2: expanded blastocyst ; 3: hatching/hatched blastocyst). Here we examined differential staining of a subset of expanded blastocysts (XB) from the previous study to assess the influence of vial material, medium volume, and number of COC per vial on total cell count, number and ratio of inner cell mass (ICM), and trophectoderm (TE) cells. In experiment 1 (4 groups), oocytes were matured in different vials without lids in an incubator at 5.5% CO2 in humidified atmospheric air at 38.5°C to assess plastic toxicity. In experiment 2 (6 groups) and experiment 3 (6 groups), the 2 best performing vials-polypropylene cryovials (Sigma-Aldrich, St. Louis, MO, USA) and glass vials (VWR International, Radnor, PA, USA)-containing 50% (Exp. 2) or 95% (Exp. 3) medium volume per vial and 5, 20, or 45 COC per vial were tested. In experiments 2 and 3, the vials were closed and incubated in atmospheric air at 38.5°C. All groups were evaluated for blastocyst rates, kinetics, and morphology. Because kinetics (range 2.01–2.25) and morphology (range 2.15–2.50) were similar in all groups, only XB were collected from each group. These were fixed and stained with CDX2 antibody and Hoechst (Wydooghe et al. 2011 Anal. Biochem. 416, 228-230) and their ICM and TE cells were counted. The cells were counted manually in blinded groups using an inverted fluorescence microscope and 16× magnification. Counts of total, ICM, and TE cells were compared between treatments by a two-way ANOVA analysis. A total of 240 XB from the 16 different vial groups were counted in the 3 experiments, with average total cell counts of 139 (110–211) and ICM cell counts of 44 (28–75). Even though the blastocyst rates differed between some of the groups, the cell counts within the XB did not differ statistically significantly between groups. In fact, the highest cell count was found in the glass vial group with the lowest blastocyst rate (45 COC per vial in 50% medium volume; blastocyst rate 28%, total cells 211, ICM cells 75). We have previously demonstrated that the type of vial, number of COC per vial, and the volume of medium per vial influence the subsequent blastocyst rates. It is concluded, however, that the embryos able to proceed to the blastocyst stages seem to be of the same quality in all groups, assessed by kinetics, morphology, and cell counts within XB.


2015 ◽  
Vol 27 (1) ◽  
pp. 200
Author(s):  
C. Sauvegarde ◽  
R. Rezsöhazy ◽  
I. Donnay

Hox proteins are transcription factors known to be essential for embryo patterning. The detection of some Hox transcripts in oocytes and early embryos suggests that they could play a role before gastrulation. We previously demonstrated Hoxb9 expression in oocytes and from the zygote to the blastocyst stage in the mouse and the bovine (Paul et al. 2011 Mol. Reprod. Dev. 78, 436). The protein is present at all stages and in all cells with a strong nuclear staining in both species. The objective of this study was to perform an in-depth study at the blastocyst stage to compare the level of the nuclear protein between the inner cell mass (ICM) and the trophectoderm (TE) from the early to the expanded blastocyst stage. In vitro produced bovine blastocysts were collected at Day 6, Day 7.5, and Day 8 post-insemination. Hoxb9 proteins were detected by whole-mount immunofluorescence. TE nuclei were strongly stained at all stages while from D6 but especially from D7.5, the level of HOXB9 seemed to decrease in ICM nuclei with an increasing heterogeneity of staining between ICM nuclei. A light and apparently stable staining was also observed in the cytoplasm. Confocal images were quantified (Nis-element 3.1, Nikon). For each cell of TE or ICM, the ratio between the mean intensity of the nucleus and the mean intensity of the corresponding total cytoplasm was calculated. Whatever the stages, TE ratios were significantly (Mann–Whitney test; P < 0.0001) higher than ICM ratios, suggesting that HOXB9 is present in higher amounts in TE than in ICM cells. This observation could be correlated with the reduced HOXB9 relative expression observed in blastocysts. Moreover, the proportion of blastocysts showing a reduction of HOXB9 staining in at least one nucleus significantly increased from Day 6 to Day 7.5 blastocysts and Day 8 blastocysts (from 26% to 74% or 85%, chi-squared test; P < 0.001). Mouse zygotes, collected from superovulated mice, were cultured in vitro and embryos were collected 72 h, 80 h, 92 h and 100 h post-hCG injection. A similar nuclear staining was observed in all cells until 80 h post-hCG injection, while heterogeneity of staining appeared in ICM cells 92 h post-hCG, but especially in 100 h post-hCG embryos. The quantitative study was performed only on this latest stage and confirmed the stronger staining in TE than in ICM nuclei (Mann–Whitney test; P < 0.0001) observed in the bovine. At this stage, 82% of blastocysts presented a reduced Hoxb9 staining in some or all ICM nuclei. In conclusion, Hoxb9 protein is detected in all blastocyst nuclei both in the mouse and in the bovine. However, the protein seems globally less abundant in the ICM than in the TE cells. Moreover, the percentage of bovine blastocysts showing a reduction in HOXB9 staining intensity in ICM nuclei increases with blastocyst expansion. These results suggest an involvement of Hoxb9 in cell lineage differentiation in mammals.C. S. holds a FRIA PhD grant from the FRS-FNRS (Belgium). This study is supported by the FRS-FNRS and by an Action de Recherche Concertée.


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 589-599 ◽  
Author(s):  
Y H Choi ◽  
H D Harding ◽  
D L Hartman ◽  
A D Obermiller ◽  
S Kurosaka ◽  
...  

The reported patterns of trophectodermal expression of POU5F1 protein in blastocysts vary among species, and are possibly related to the differences in placental growth and function. This study investigated the pattern of embryonic POU5F1 expression in the horse, a species with delayed placental formation. Immature equine oocytes expressed POU5F1 protein in the cytoplasm and nucleus. Staining for POU5F1 protein inin vitro-produced (IVP) embryos decreased to day 5 of culture, then the nuclear staining increased to day 7. IVP day-7 to -11 blastocysts showed POU5F1 staining in nuclei throughout the blastocysts. In contrast,in vivo-produced day-7 to -10 blastocysts showed greatly reduced trophoectodermal POU5F1 protein expression. To determine whether the uterine environment modulates POU5F1 expression, IVP blastocysts were transferred to the uteri of mares, then recovered 2–3 days later (IVP-ET embryos). These embryos showed similar POU5F1 expression as thein vivo-produced embryos. Levels ofPOU5F1,SOX2, andNANOGmRNA in IVP-ET blastocysts were significantly higher in the inner cell mass than in trophectoderm (TE) cells. These data suggest that the differentiation of equine TE, as indicated by loss of POU5F1 expression, is impaired duringin vitroculture, but proceeds normally when the embryos are exposed to the uterine environment. Previously reported differences in trophectodermal expression of POU5F1 among species may thus be in part artifactual, i.e. related toin vitroculture. Failure for correction of such changes by the uterine environment is a potential factor in the placental abnormalities seen after transfer of cultured embryos in some species.


Zygote ◽  
2014 ◽  
Vol 24 (1) ◽  
pp. 18-30 ◽  
Author(s):  
Alejandra E. Velasquez ◽  
Fidel O. Castro ◽  
Daniel Veraguas ◽  
Jose F. Cox ◽  
Evelyn Lara ◽  
...  

SummaryEmbryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7–9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.


Sign in / Sign up

Export Citation Format

Share Document