scholarly journals Sevoflurane Preconditioning Confers Delayed Cardioprotection by Upregulating AMP-Activated Protein Kinase Levels to Restore Autophagic Flux in Ischemia-Reperfusion Rat Hearts

2020 ◽  
Vol 26 ◽  
Author(s):  
Lei Hong ◽  
Ying Sun ◽  
Jian-Zhong An ◽  
Chen Wang ◽  
Shi-Gang Qiao
Author(s):  
Tian Li ◽  
Yue Yin ◽  
Nan Mu ◽  
Yishi Wang ◽  
Manling Liu ◽  
...  

Background: Cardiac autophagic flux is impaired during myocardial ischemia/reperfusion (MI/R). Impaired autophagic flux may exacerbate MI/R injury. Charged multivesicular body protein 2B (CHMP2B) is a subunit of the endosomal sorting complex required for transport (ESCRT-III) complex that is required for autophagy. However, the reverse role of CHMP2B accumulation in autophagy and MI/R injury has not been established. The objective of this article is to elucidate the roles of AMP-activated protein kinase (AMPK)/atrogin-1 pathways in inhibiting CHMP2B accumulation in ischemia–reperfusion injury.Methods: Male C57BL/6 mice (3–4 months) and H9c2 cardiomyocytes were used to evaluate MI/R and hypoxia/reoxygenation (H/R) injury in vivo and in vitro, respectively. MI/R was built by a left lateral thoracotomy and occluded the left anterior descending artery. H9c2 cells were firstly treated in 95% N2 and 5% CO2 for 15 h and reoxygenation for 1 h. Metformin (100 mg/kg/d) and CHMP2B (Ad-CHMP2B) transfected adenoviruses were administered to the mice. The H9c2 cells were treated with metformin (2.5 mM), MG-132 (10 μM), bafilomycin A1 (10 nM), and compound C (20 μM).Results: Autophagic flux was found to be inhibited in H/R-treated cardiomyocytes and MI/R mice, with elevated cardiac CHMP2B accumulation. Upregulated CHMP2B levels in the in vivo and in vitro experiments were shown to inhibit autophagic flux leading to the deterioration of H/R-cardiomyocytes and MI/R injury. This finding implies that CHMP2B accumulation increases the risk of myocardial ischemia. Metformin suppressed CHMP2B accumulation and ameliorated H/R-induced autophagic dysfunction by activating AMPK. Activated AMPK upregulated the messenger RNA expression and protein levels of atrogin-1, a muscle-specific ubiquitin ligase, in the myocardium. Atrogin-1 significantly enhanced the interaction between atrogin-1 and CHMP2B, therefore, promoting CHMP2B degradation in the MI/R myocardium. Finally, this study revealed that metformin-inhibited CHMP2B accumulation induced autophagic impairment and ischemic susceptibility in vivo through the AMPK-regulated CHMP2B degradation by atrogin-1.Conclusion: Impaired CHMP2B clearance in vitro and in vivo inhibits autophagic flux and weakens the myocardial ischemic tolerance. Metformin treatment degrades CHMP2B through the AMPK-atrogin-1-dependent pathway to maintain the homeostasis of autophagic flux. This is a novel mechanism that enriches the understanding of cardioprotection.


FEBS Letters ◽  
2001 ◽  
Vol 505 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Christophe Beauloye ◽  
Anne-Sophie Marsin ◽  
Luc Bertrand ◽  
Ulrike Krause ◽  
D.Grahame Hardie ◽  
...  

2005 ◽  
Vol 288 (5) ◽  
pp. H2412-H2421 ◽  
Author(s):  
Markus Frederich ◽  
Li Zhang ◽  
James A. Balschi

The hypothesis was tested that hypoxia increases AMP-activated protein kinase (AMPK) activity independently of AMP concentration ([AMP]) in heart. In isolated perfused rat hearts, cytosolic [AMP] was changed from 0.2 to 16 μM using metabolic inhibitors during both normal oxygenation (95% O2-5% CO2, normoxia) and limited oxygenation (95% N2-5% CO2, hypoxia). Total AMPK activity measured in vitro ranged from 2 to 40 pmol·min−1·mg protein−1 in normoxic hearts and from 5 to 55 pmol·min−1·mg protein−1 in hypoxic hearts. The dependence of the in vitro total AMPK activity on the in vivo cytosolic [AMP] was determined by fitting the measurements from individual hearts to a hyperbolic equation. The [AMP] resulting in half-maximal total AMPK activity ( A0.5) was 3 ± 1 μM for hypoxic hearts and 28 ± 13 μM for normoxic hearts. The A0.5 for α2-isoform AMPK activity was 2 ± 1 μM for hypoxic hearts and 13 ± 8 μM for normoxic hearts. Total AMPK activity correlated with the phosphorylation of the Thr172 residue of the AMPK α-subunit. In potassium-arrested hearts perfused with variable O2 content, α-subunit Thr172 phosphorylation increased at O2 ≤ 21% even though [AMP] was <0.3 μM. Thus hypoxia or O2 ≤ 21% increased AMPK phosphorylation and activity independently of cytosolic [AMP]. The hypoxic increase in AMPK activity may result from either direct phosphorylation of Thr172 by an upstream kinase or reduction in the A0.5 for [AMP].


2010 ◽  
Vol 298 (5) ◽  
pp. F1067-F1077 ◽  
Author(s):  
Kenneth R. Hallows ◽  
Peter F. Mount ◽  
Núria M. Pastor-Soler ◽  
David A. Power

The ultrasensitive energy sensor AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and energy-consuming pathways. AMPK is highly expressed in the kidney where it is reported to be involved in a variety of physiological and pathological processes including ion transport, podocyte function, and diabetic renal hypertrophy. Sodium transport is the major energy-consuming process in the kidney, and AMPK has been proposed to contribute to the coupling of ion transport with cellular energy metabolism. Specifically, AMPK has been identified as a regulator of several ion transporters of significance in renal physiology, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), the Na+-K+-2Cl− cotransporter (NKCC), and the vacuolar H+-ATPase (V-ATPase). Identified regulators of AMPK in the kidney include dietary salt, diabetes, adiponectin, and ischemia. Activation of AMPK in response to adiponectin is described in podocytes, where it reduces albuminuria, and in tubular cells, where it reduces glycogen accumulation. Reduced AMPK activity in the diabetic kidney is associated with renal accumulation of triglyceride and glycogen and the pathogenesis of diabetic renal hypertrophy. Acute renal ischemia causes a rapid and powerful activation of AMPK, but the functional significance of this observation remains unclear. Despite the recent advances, there remain significant gaps in the present understanding of both the upstream regulating pathways and the downstream substrates for AMPK in the kidney. A more complete understanding of the AMPK pathway in the kidney offers potential for improved therapies for several renal diseases including diabetic nephropathy, polycystic kidney disease, and ischemia-reperfusion injury.


2010 ◽  
Vol 298 (2) ◽  
pp. H570-H579 ◽  
Author(s):  
Chengqun Huang ◽  
Wayne Liu ◽  
Cynthia N. Perry ◽  
Smadar Yitzhaki ◽  
Youngil Lee ◽  
...  

Previously, we showed that sulfaphenazole (SUL), an antimicrobial agent that is a potent inhibitor of cytochrome P4502C9, is protective against ischemia-reperfusion (I/R) injury (Ref. 15 ). The mechanism, however, underlying this cardioprotection, is largely unknown. With evidence that activation of autophagy is protective against simulated I/R in HL-1 cells, and evidence that autophagy is upregulated in preconditioned hearts, we hypothesized that SUL-mediated cardioprotection might resemble ischemic preconditioning with respect to activation of protein kinase C and autophagy. We used the Langendorff model of global ischemia to assess the role of autophagy and protein kinase C in myocardial protection by SUL during I/R. We show that SUL enhanced recovery of function, reduced creatine kinase release, decreased infarct size, and induced autophagy. SUL also triggered PKC translocation, whereas inhibition of PKC with chelerythrine blocked the activation of autophagy in adult rat cardiomyocytes. In the Langendorff model, chelerythrine suppressed autophagy and abolished the protection mediated by SUL. SUL increased autophagy in adult rat cardiomyocytes infected with GFP-LC3 adenovirus, in isolated perfused rat hearts, and in mCherry-LC3 transgenic mice. To establish the role of autophagy in cardioprotection, we used the cell-permeable dominant-negative inhibitor of autophagy, Tat-Atg5K130R. Autophagy and cardioprotection were abolished in rat hearts perfused with recombinant Tat-Atg5K130R. Taken together, these studies indicate that cardioprotection mediated by SUL involves a PKC-dependent induction of autophagy. The findings suggest that autophagy may be a fundamental process that enhances the heart's tolerance to ischemia.


Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1624-1635 ◽  
Author(s):  
Claudia Penna ◽  
Fabio Settanni ◽  
Francesca Tullio ◽  
Letizia Trovato ◽  
Pasquale Pagliaro ◽  
...  

Abstract GHRH stimulates GH synthesis and release from the pituitary and exerts direct effects in extrapituitary tissues. We have previously shown that pretreatment with GHRH reduces cardiomyocyte apoptosis and improves heart function in isolated rat hearts subjected to ischemia/reperfusion (I/R). Here, we determined whether GHRH given at reperfusion reduces myocardial reperfusion injury and investigated the molecular mechanisms involved in GHRH effects. Isolated rat hearts subjected to I/R were treated at the onset of reperfusion with: 1) GHRH; 2) GHRH+GHRH antagonist JV-1-36; 3) GHRH+mitochondrial ATP-dependent potassium channel inhibitor 5-hydroxydecanoate; 4) GHRH+mitochondrial permeability transition pore opener atractyloside; 5) GHRH+ phosphoinositide 3-kinase/Akt inhibitor Wortmannin (WM); and 6) GHRH+signal transducer and activator of transcription-3 inhibitor tyrphostin-AG490 (AG490). GHRH reduced infarct size at the end of reperfusion and reverted contractility dysfunction in I/R hearts. These effects were inhibited by either JV-1-36, 5-hydroxydecanoate, atractylosid, WM, or AG490. Western blot analysis on left ventricles showed GHRH-induced phosphorylation of either the reperfusion injury salvage kinases (RISK), phosphoinositide 3-kinase/Akt, ERK1/2, and glycogen synthase kinase-3β or signal transducer and activator of transcription-3, as part of the survivor activating factor enhancement (SAFE) pathway. GHRH-induced activation of RISK and SAFE pathways was blocked by JV-1-36, WM, and AG490. Furthermore, GHRH increased the phosphorylation of endothelial nitric oxide synthase and AMP-activated protein kinase and preserved postischemic nicotinamide adenine dinucleotide (NAD+) levels. These results suggest that GHRH protects the heart from I/R injury through receptor-mediated mechanisms, leading to activation of RISK and SAFE pathways, which converge on mitochondria and possibly on AMP-activated protein kinase.


2004 ◽  
Vol 82 (6) ◽  
pp. 409-416 ◽  
Author(s):  
Hernando Leon ◽  
Laura L Atkinson ◽  
Jolanta Sawicka ◽  
Ken Strynadka ◽  
Gary D Lopaschuk ◽  
...  

Ischemia-reperfusion injury in the heart results in enhanced production of H2O2 and activation of AMP-activated protein kinase (AMPK). Since mutations in AMPK result in cardiovascular dysfunction, we investigated whether the activation of AMPK mediates the H2O2-induced reduction in cardiac mechanical function. Isolated working rat hearts were perfused at 37 °C with Krebs-Henseleit solution. Following a 20-minute equilibration period, a single bolus of H2O2 (300 µmol/L) was added and the hearts were perfused for an additional 5 min. H2O2 induced a dramatic and progressive reduction in cardiac function. This was accompanied by rapid and significant activation of AMPK, an increase in Thr-172 phosphorylation of AMPK, and an increase in the creatine to phosphocreatine (Cr/PCr) ratio. Addition of pyruvate (5 mmol/L) to the perfusate prevented the H2O2-mediated reduction in cardiac mechanical dysfunction, activation of myocardial AMPK activity, increase in AMPK phosphorylation and the increase in the Cr/PCr ratio. Hearts challenged with H2O2 (300 µmol/L) in presence of either AMPK inhibitor Compound C (10 µmol/L) or its vehicle (dimethyl sulfoxide (DMSO), 0.1%) showed reduced impairment in cardiac mechanical function. Compound C but not its vehicle significantly inhibited myocardial AMPK activity. Thus, H2O2 induces cardiac dysfunction via both AMPK-dependent and independent mechanisms.Key words: oxidative stress, AMPK, antioxidant, isolated rat heart, pyruvate.


Sign in / Sign up

Export Citation Format

Share Document