scholarly journals AEB-071 Ameliorates Muscle Weakness by Altering Helper T Lymphocytes in an Experimental Autoimmune Myasthenia Gravis Rat Model

2020 ◽  
Vol 26 ◽  
Author(s):  
Feng Jing ◽  
Wei Huang ◽  
Qian Ma ◽  
Sheng-jie Xu ◽  
Chang-jin Wu ◽  
...  
1994 ◽  
Vol 6 (12) ◽  
pp. 1807-1815 ◽  
Author(s):  
Patricia A. Thompson ◽  
Robert McAtee ◽  
Anthony J. Infante ◽  
Patricia Currier ◽  
William Beninatl ◽  
...  

1997 ◽  
Vol 186 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Balaji Balasa ◽  
Caishu Deng ◽  
Jae Lee ◽  
Linda M. Bradley ◽  
Dyana K. Dalton ◽  
...  

Experimental autoimmune myasthenia gravis (EAMG) is an animal model of human myasthenia gravis (MG). In mice, EAMG is induced by immunization with Torpedo californica acetylcholine receptor (AChR) in complete Freund's adjuvant (CFA). However, the role of cytokines in the pathogenesis of EAMG is not clear. Because EAMG is an antibody-mediated disease, it is of the prevailing notion that Th2 but not Th1 cytokines play a role in the pathogenesis of this disease. To test the hypothesis that the Th1 cytokine, interferon (IFN)-γ, plays a role in the development of EAMG, we immunized IFN-γ knockout (IFN-gko) (−/−) mice and wild-type (WT) (+/+) mice of H-2b haplotype with AChR in CFA. We observed that AChR-primed lymph node cells from IFN-gko mice proliferated normally to AChR and to its dominant pathogenic α146–162 sequence when compared with these cells from the WT mice. However, the IFN-gko mice had no signs of muscle weakness and remained resistant to clinical EAMG at a time when the WT mice exhibited severe muscle weakness and some died. The resistance of IFN-gko mice was associated with greatly reduced levels of circulating anti-AChR antibody levels compared with those in the WT mice. Comparatively, immune sera from IFN-gko mice showed a dramatic reduction in mouse AChR-specific IgG1 and IgG2a antibodies. However, keyhole limpet hemocyanin (KLH)–priming of IFN-gko mice readily elicited both T cell and antibody responses, suggesting that IFN-γ regulates the humoral immune response distinctly to self (AChR) versus foreign (KLH) antigens. We conclude that IFN-γ is required for the generation of a pathogenic anti-AChR humoral immune response and for conferring susceptibility of mice to clinical EAMG.


1982 ◽  
Vol 57 (2-3) ◽  
pp. 265-280 ◽  
Author(s):  
Reinhard Hohlfeld ◽  
Inge Kalies ◽  
Martin Ernst ◽  
Uwe-Peter Ketelsen ◽  
Hartmut Wekerle

1976 ◽  
Vol 144 (3) ◽  
pp. 739-753 ◽  
Author(s):  
J M Lindstrom ◽  
A G Engel ◽  
M E Seybold ◽  
V A Lennon ◽  
E H Lambert

Passive transfer of experimental autoimmune myasthenia gravis (EAMG) was achieved using the gamma globulin fraction and purified IgG from sera of rats immunized with Electrophus electricus (eel) acetylcholine receptor (AChR). This demonstrates the critical role of anti-AChR antibodies in impairing neuromuscular transmission in EAMG. Passive transfer of anti-AChR antibodies from rats with chronic EAMG induced signs of the acute phase of EAMG in normal recipient rats, including invasion of the motor end-plate region by mononuclear inflammatory cells. Clinical, eletrophysiological, histological, and biochemical signs of acute EAMG were observed by 24 h after antibody transfer. Recipient rats developed profound weakness and fatigability, and the posture characteristic of EAMG. Striking weight loss was attributable to dehydration. Recipient rats showed large decreases in amplitude of muscle responses to motor nerve stimulation, and repetitive nerve stimulation induced characteristic decrementing responses. End-plate potentials were not detectable in many muscle fibers, and the amplitudes of miniature end-plate potentials were reduced in the others. Passively transferred EAMG more severely affected the forearm muscles than diaphragm muscles, though neuromuscular transmission was impaired and curare sensitivity was increased in both muscles. Some AChR extracted from the muscles of rats with passively transferred EAMG was found to be complexed with antibody, and the total yield of AChR per rat was decreased. The quantitative decrease in AChR approximately paralleled in time the course of clinical and electrophysiological signs. The amount of AChR increased to normal levels and beyond at the time neuromuscular transmission was improving. The excess of AChR extractable from muscle as the serum antibody level decreased probably represented extrajunctional receptors formed in response to functional denervation caused by phagocytosis of the postsynaptic membrane by macrophages. The amount of antibody required to passively transfer EAMG was less than required to bind all AChR molecules in a rat's musculature. The effectiveness of samll amounts of antibody was probably amplified by the activation of complement and by the destruction of large areas of postsynaptic membrane by phagocytic cells. A self-sustaining autoimmune response to AChR was not provoked in animals with passively transferred EAMG.


Sign in / Sign up

Export Citation Format

Share Document