Astragalus Flavone Induces Proliferation and Differentiation of Neural Stem Cells in a Cerebral Infarction Model

2021 ◽  
Vol 28 ◽  
Author(s):  
Han Gao ◽  
Ningjing Huang ◽  
Weiwei Wang ◽  
Lingling Zhang ◽  
Li Cai ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Yang ◽  
Li’e Zang ◽  
Jingwen Cui ◽  
Linlin Wei

Abstract Background Stroke serves as a prevalent cerebrovascular disorder with severe cerebral ischemia/reperfusion (CIR) injury, in which neural stem cells (NSCs) play critical roles in the recovery of cerebral function. Circular RNAs (circRNAs) have been widely found to participate in stroke and NSC modulation. However, the role of circRNA TTC3 (circTTC3) in the regulation of CIR injury and NSCs remains elusive. Here, we aimed to explore the impact of circTTC3 on CIR injury and NSCs. Methods The middle cerebral artery occlusion/repression (MCAO/R) model was established in C57BL/6J mice. The primary astrocytes were isolated from the cerebellum from C57BL/6J mice. The primary NSCs were obtained from rat embryos. The effect of circTTC3 on CIR injury and NSCs was analyzed by TTC staining, qPCR, Western blot, LDH colorimetric kits, MTT assays, Annexin V-FITC Apoptosis Detection Kit, luciferase reporter gene assays, and others in the system. Results Significantly, the expression of circTTC3 was elevated in the MCAO/R mice and oxygen and glucose deprivation (OGD)-treated astrocytes. The depletion of circTTC3 attenuated cerebral infarction, neurological score, and brain water content. The OGD treatment induced apoptosis and the levels of lactate dehydrogenase (LDH) in the astrocytes, in which circTTC3 depletion reduced this phenotype in the system. Moreover, the depletion of circTTC3 promoted the proliferation and upregulated the nestin and β-tubulin III expression in NSCs. Mechanically, circTTC3 was able to sponge miR-372-3p, and miR-372-3p can target Toll-like receptor 4 (TLR4) in NSCs. The miR-372-3p inhibitor or TLR4 overexpression could reverse circTTC3 depletion-mediated astrocyte OGD injury and NSC regulation. Conclusion Thus, we conclude that circTTC3 regulates CIR injury and NSCs by the miR-372-3p/TLR4 axis in cerebral infarction. Our finding presents new insight into the mechanism by which circTTC3 modulates CIR injury and NSC dysfunction. CircTTC3, miR-372-3p, and TLR4 may serve as potential targets for the treatment of CIR injury during stroke.


2009 ◽  
Vol 24 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Bo Zhang ◽  
Ren-zhi Wang ◽  
Zhi-gang Lian ◽  
Yang Song ◽  
Yong Yao

Author(s):  
Ning-Ning Cai ◽  
Qi Geng ◽  
Yu Jiang ◽  
Wen-Qian Zhu ◽  
Rui Yang ◽  
...  

Heliyon ◽  
2017 ◽  
Vol 3 (6) ◽  
pp. e00318 ◽  
Author(s):  
Melanie Bender ◽  
Lisa Schwind ◽  
David Grundmann ◽  
Monika Martin ◽  
Markus Klotz ◽  
...  

2014 ◽  
Vol 38 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Shuang‐Qing Chen ◽  
Qing Cai ◽  
Yu‐Ying Shen ◽  
Xiu‐Ying Cai ◽  
Hai‐Ying Lei

2020 ◽  
Author(s):  
Huanhuan Sha ◽  
Peipei Peng ◽  
Bing Li ◽  
Guohua Wei ◽  
Juan Wang ◽  
...  

Abstract Background: Recently, the number of neonatal patients receiving surgery under general anesthesia has increased. Ketamine disrupts the proliferation and differentiation of developing neural stem cells (NSCs). Therefore, the safe use of ketamine in pediatric anesthesia has been an issue of increasing concern among anesthesiologists and the children’s parents. Dexmedetomidine (DEX) is widely used in sedation, as an antianxiety agent and for analgesia. DEX has recently been shown to provide neuroprotection against anesthetic-induced neurotoxicity in the developing brain. The aim of this in vivo study was to investigate whether DEX exerted neuroprotective effects on the proliferation and differentiation of NSCs in the subventricular zone (SVZ) following neonatal ketamine exposure. Methods: Postnatal day 7 (PND-7) male Sprague-Dawley rats were equally divided into the following 5 groups: Control group (n=8), Ketamine group (n=8), 1 μg/kg DEX+Ketamine group (n=8), 5 μg/kg DEX+Ketamine group (n=8) and 10 μg/kg DEX+Ketamine group (n=8). The proliferation and differentiation of NSCs in the SVZ were assessed using immunostaining with BrdU incorporation. The levels of Nestin and β-tubulin III in the SVZ were measured using Western blot analyses. Apoptosis was assessed by detecting the levels of the cleaved caspase-3 protein using Western blotting. Results: Neonatal ketamine exposure significantly inhibited NSC proliferation and astrocytic differentiation in the SVZ, and neuronal differentiation was markedly increased. Furthermore, pretreatment with moderate (5 μg/kg) or high doses (10 μg/kg) of DEX reversed the ketamine-induced disturbances in the proliferation and differentiation of NSCs. Meanwhile, neonatal ketamine exposure significantly decreased the expression of Nestin and increased the expression of β-tubulin III in the SVZ compared with the Control group. Treatment with 10 μg/kg DEX notably reversed the ketamine-induced changes in the levels of Nestin and β-tubulin III. In addition, a pretreatment with 10 μg/kg DEX before ketamine anesthesia prevented apoptosis in the SVZ induced by neonatal ketamine exposure. Conclusions: Based on our findings, DEX may exert neuroprotective effects on the proliferation and differentiation of NSCs in the SVZ of neonatal rats in a repeated ketamine anesthesia model.


Sign in / Sign up

Export Citation Format

Share Document