Research on Bank Credit Card Default Prediction Based on Machine Learning

2019 ◽  
Vol 09 (04) ◽  
pp. 145-152
Author(s):  
华玮 单
2021 ◽  
Vol 5 (2) ◽  
pp. 20-25
Author(s):  
Azhi Abdalmohammed Faraj ◽  
Didam Ahmed Mahmud ◽  
Bilal Najmaddin Rashid

Credit card defaults pause a business-critical threat in banking systems thus prompt detection of defaulters is a crucial and challenging research problem. Machine learning algorithms must deal with a heavily skewed dataset since the ratio of defaulters to non-defaulters is very small. The purpose of this research is to apply different ensemble methods and compare their performance in detecting the probability of defaults customer’s credit card default payments in Taiwan from the UCI Machine learning repository. This is done on both the original skewed dataset and then on balanced dataset several studies have showed the superiority of neural networks as compared to traditional machine learning algorithms, the results of our study show that ensemble methods consistently outperform Neural Networks and other machine learning algorithms in terms of F1 score and area under receiver operating characteristic curve regardless of balancing the dataset or ignoring the imbalance


Author(s):  
Upasana Mukherjee ◽  
Vandana Thakkar ◽  
Shawni Dutta ◽  
Utsab Mukherjee ◽  
Samir Kumar Bandyopadhyay

The growth of regularly generated data from many financial activities has significant implications for every corner of financial modelling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many more can be modelled by implementing machine learning methods. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of  97% and 96.84% respectively.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 201173-201198 ◽  
Author(s):  
Talha Mahboob Alam ◽  
Kamran Shaukat ◽  
Ibrahim A. Hameed ◽  
Suhuai Luo ◽  
Muhammad Umer Sarwar ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ying Chen ◽  
Ruirui Zhang

Aiming at the problem that the credit card default data of a financial institution is unbalanced, which leads to unsatisfactory prediction results, this paper proposes a prediction model based on k-means SMOTE and BP neural network. In this model, k-means SMOTE algorithm is used to change the data distribution, and then the importance of data features is calculated by using random forest, and then it is substituted into the initial weights of BP neural network for prediction. The model effectively solves the problem of sample data imbalance. At the same time, this paper constructs five common machine learning models, KNN, logistics, SVM, random forest, and tree, and compares the classification performance of these six prediction models. The experimental results show that the proposed algorithm can greatly improve the prediction performance of the model, making its AUC value from 0.765 to 0.929. Moreover, when the importance of features is taken as the initial weight of BP neural network, the accuracy of model prediction is also slightly improved. In addition, compared with the other five prediction models, the comprehensive prediction effect of BP neural network is better.


Sign in / Sign up

Export Citation Format

Share Document