Research Progress of Chatter Stability Analysis for Milling Process in Time-Domain

2020 ◽  
Vol 09 (06) ◽  
pp. 618-627
Author(s):  
忠群 李
2016 ◽  
Vol 836-837 ◽  
pp. 94-98 ◽  
Author(s):  
Ying Chao Ma ◽  
Min Wan ◽  
Wei Hong Zhang

In this paper, time domain simulation has been carried out to study the chatter stability of milling process. Dynamic chip thickness is calculated by analyzing the kinematics of the cutter, and thus dynamic governing equation revealing the dynamic behaviors between the cutter and workpiece is established. Solving framework is constructed by using the Simulink module and S-Function of Matlab software, and dynamic deflection is achieved with the four-order Runge-Kutta algorithm. With the simulated cutting forces, a criterion for the construction of the stability lobe is suggested. At the same time, algorithm for the prediction of the surface topography involving the dynamic response of the machining system is developed.


Author(s):  
Josiah A. Bryan ◽  
Roger C. Fales

A high-speed milling system is considered, which is prone to chatter vibration, a stability condition dependent on system parameters (e.g., cutting force coefficients). This work is motivated by the need for model parameters which can be used in stability analysis. An Extended Kalman Filter (EKF) is proposed to estimate cutting force coefficients for each tooth in a low-radial-immersion milling process to aid chatter stability prediction. The proposed EKF utilizes tool deflection measurements and no force measurements. The model used in the EKF is found to be observable, a quality required to achieve valid state estimations. Running the EKF with experimental tool deflection measurements produces estimates of cutting force coefficients that result in good correlation between simulation (using the estimated coefficients) and experiment. Such an EKF may help customize chatter stability analysis to any particular tool-workpiece system.


Author(s):  
Min Wan ◽  
Zekai Murat Kilic ◽  
Yusuf Altintas

The mechanics and dynamics of the combined processes are presented for multifunctional tools, which can drill, bore, and chamfer holes in one operation. The oblique cutting forces on each cutting edge with varying geometry are modeled first, followed by their transformations to tangential, radial, and axial directions of the cutter. The regenerative effect of lateral and torsional/axial vibrations is considered in predicting the dynamic chip thickness with multiple delays due to distribution of cutting edges on the cutter body. The lateral and torsional/axial chatter stability of the complete hole making operation is predicted in semidiscrete time domain. The proposed static cutting force and chatter stability prediction models are experimentally proven for two different multifunctional tools in drilling Aluminum Al7050 and Steel AISI1045.


2019 ◽  
Vol 41 (13) ◽  
pp. 3626-3636 ◽  
Author(s):  
Omer Turksoy ◽  
Saffet Ayasun ◽  
Yakup Hames ◽  
Sahin Sonmez

This paper investigates the effect of gain and phase margins (GPMs) on the delay-dependent stability analysis of the pitch control system (PCS) of large wind turbines (LWTs) with time delays. A frequency-domain based exact method that takes into account both GPMs is utilized to determine stability delay margins in terms of system and controller parameters. A gain-phase margin tester (GPMT) is introduced to the PCS to take into GPMs in delay margin computation. For a wide range of proportional–integral controller gains, time delay values at which the PCS is both stable and have desired stability margin measured by GPMs are computed. The accuracy of stability delay margins is verified by an independent algorithm, Quasi-Polynomial Mapping Based Rootfinder (QPmR) and time-domain simulations. The time-domain simulation studies also indicate that delay margins must be determined considering GPMs to have a better dynamic performance in term of fast damping of oscillations, less overshoot and settling time.


2008 ◽  
Vol 1 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Altintas ◽  
G. Stepan ◽  
D. Merdol ◽  
Z. Dombovari

Sign in / Sign up

Export Citation Format

Share Document