scholarly journals The Matching Analysis of the Friction Pair Considering the Temperature Field and Stress Field of the Brake Disc

2016 ◽  
Vol 05 (06) ◽  
pp. 157-165
Author(s):  
泽旺 袁
Author(s):  
Xianyu Zeng ◽  
Yu Liu ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Yue Zhang ◽  
...  

Abstract The braking performance of the vehicle directly affects the driving safety. Because of the different number of brake pistons and the wear of the brake pads, the distribution of braking pressure will be uneven, which will affect the distribution of temperature field and stress field during braking, then affect the thermal fatigue life of brake discs. Therefore, in this paper, the static tensile and compressive tests of gray cast iron HT200 samples cut from vehicle brake discs are carried out at −25°C, room temperature (25°C) and 500°C, and the stress-strain curves are analyzed to obtain mechanical properties such as strength limit, elastic modulus and so on at the temperature. Based on these parameters, the finite element software ABAQUS is used to simulate the single emergency braking condition. The thermal-structural coupling simulation of brake disc is carried out to study the influences of uneven brake pressure distribution on the temperature and stress fields of brake disc, which lays a foundation for the thermal fatigue life evaluation of brake disc.


2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


2013 ◽  
Vol 353-356 ◽  
pp. 221-224
Author(s):  
Shuang Zhang ◽  
Chun An Tang ◽  
Lei Li ◽  
Shuai Li

Saturated frozen soil is composed of soil, unfrozen water and ice, whose subgrade deformation is due to the weakened of internal structure which coursed by damage of the materials in the process of the cycle of freezing and thawing. Considing of the heterogeneity of saturated frozen soil and the phase transition between water and ice, and using of the damage mechanics theory, thermodynamics theory, filtration mechanics theory, a constitutive model of saturated frozen soil is setted up, which is of the coupfing problem of temperature field, water field and stress field. The rationality and validity of the model is verified by the experiment. It is also provided a new method for the study of frozen soil.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


1989 ◽  
Vol 24 (1) ◽  
pp. 9-17 ◽  
Author(s):  
V. T. V. S. Ramachandra Rao ◽  
H. Ramasubramanian ◽  
K. N. Seetharamu
Keyword(s):  

2011 ◽  
Vol 148-149 ◽  
pp. 20-23
Author(s):  
Xing Zhi Wang ◽  
Yong Shuai ◽  
Fu Qiang Wang ◽  
Chun Liang Yu

Depending on the solar radiant flux and velocity measured in Harbin, with finite element method, use a modified radiant heat flux function to calculate the temperature field of a plate on the focal region of a dish solar concentrator. Compared the result with picture taken by infrared camera, there is a good accordance between them. The temperature field is used as the loading parameters to calculate the thickness’s impact on the thermal stress field in the plate. When the value of the thickness increases, the maximum values of the stress increase, but the overall stress field tend to decrease.


Sign in / Sign up

Export Citation Format

Share Document