Research on Finite Element Simulation of Braking Process of High Speed Train Brake Disc and Influence of Surface Scratch on Stress Field

2018 ◽  
Vol 54 (12) ◽  
pp. 42
Author(s):  
Fanhui MENG
2013 ◽  
Vol 469 ◽  
pp. 209-212
Author(s):  
Xin Guo ◽  
Hong Wei Ji ◽  
Hai You Zheng

Molded pulp pallet is a kind of new green material pallet which has a broad development prospects. In this paper, ABAQUS software was applied to simulate the situation that molded pulp pallet dropped from different heights in different ways. Stress field and displacement field of the pallet are obtained. Cushioning property and deformation of the molded pulp pallet were analyzed. The work of this paper could give a significant guide to design the molded pulp pallet.


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


Author(s):  
Chong-Yang Gao ◽  
Liang-Chi Zhang ◽  
Peng-Hui Liu

This paper provides a comprehensive assessment on some commonly used thermo-viscoplastic constitutive models of metallic materials during severe plastic deformation at high-strain rates. An hcp model previously established by us was improved in this paper to enhance its predictability by incorporating the key saturation characteristic of strain hardening. A compensation-based stress-updating algorithm was also developed to introduce the new hcp model into a finite element program. The improved model with the developed algorithm was then applied in finite element simulation to investigate the high-speed machining of Ti6Al4V. It was found that by using different material models, the simulated results of cutting forces, serrated chip morphologies, and residual stresses can be different too and that the improved model proposed in this paper can be applied to simulate the titanium alloy machining process more reliably due to its physical basis when compared with some other empirical Johnson–Cook models.


Sign in / Sign up

Export Citation Format

Share Document