scholarly journals MINERALOGY AND GEOCHEMISTRY OF THE TRIADESGALANA PB-ZN-AG-AU INTERMEDIATE-HIGH SULFIDATION EPITHERMAL MINERALIZATION, MILOS ISLAND, GREECE

2017 ◽  
Vol 50 (4) ◽  
pp. 1969
Author(s):  
K. Papavasiliou ◽  
P. Voudouris ◽  
C. Kanellopoulos ◽  
D. Alfieris ◽  
S. Xydous

The Triades-Galana Pb-Zn-Ag-Au mineralization is a shallow-submarine epithermal mineralization located along NE-trending faults, NW Milos Island, Greece. It is hosted in 2.5–1.4 Ma pyroclastic rocks and is genetically related to andesitic/dacitic lava domes. Mineralization occurs as breccias, quartz-barite galena veins and stockworks within sericite-adularia or kaolinitic altered rocks. The mineralization is enriched in Mo, W and base- and precious metals (e.g. Pb, Zn, Ag) similarly to the neighbouring mineralization at Kondaros-Katsimouti and Vani, indicating common source of metals from a deep buried granitoid feeding western Milos with metals and volatiles. Paragenetic relations suggest early deposition of pyrite, followed by famatinite, polybasite and Ag-rich tetrahedrite, and then by enargite, suggesting fluctuating sulfidation states during ore formation. The evolution from Sb- towards As-rich enrichment indicate a renewed magmatic pulse (probably in the form of magmatic gases) in the hydrothermal system. Silver is present in the structure of sulfosalts (up to 66.2 wt.% in polybasite-pearceite, 15.1 wt.% in tetrahedrite and 60 wt. % in pyrargyrite). Boiling processes (as evidenced by the presence of adularia accompanying intermediate-sulfidation ore) and mixing with seawater (presence of hypogene lead chlorides) and contemporaneous uplift, contributed to ore formation.

2020 ◽  
Vol 115 (1) ◽  
pp. 129-152
Author(s):  
Fredrik Sahlström ◽  
Zhaoshan Chang ◽  
Antonio Arribas ◽  
Paul Dirks ◽  
Craig A. Johnson ◽  
...  

Abstract The Mt. Carlton Au-Ag-Cu deposit, northern Bowen basin, northeastern Australia, is an uncommon example of a sublacustrine hydrothermal system containing economic high-sulfidation epithermal mineralization. The deposit formed in the early Permian and comprises vein- and hydrothermal breccia-hosted Au-Cu mineralization within a massive rhyodacite porphyry (V2 open pit) and stratabound Ag-barite mineralization within volcano-lacustrine sedimentary rocks (A39 open pit). These orebodies are all associated with extensive advanced argillic alteration of the volcanic host rocks. Stable isotope data for disseminated alunite (δ34S = 6.3–29.2‰; δ18OSO4 = –0.1 to 9.8‰; δ18OOH = –15.3 to –3.4‰; δD = –102 to –79‰) and pyrite (δ34S = –8.8 to –2.7‰), and void-filling anhydrite (δ34S = 17.2–19.2‰; δ18OSO4 = 1.8–5.7‰), suggest that early advanced argillic alteration formed within a magmatic-hydrothermal system. The ascending magmatic vapor (δ34SΣS ≈ –1.3‰) was absorbed by meteoric water (~50–60% meteoric component), producing an acidic (pH ≈ 1) condensate that formed a silicic → quartz-alunite → quartz-dickite-kaolinite zoned alteration halo with increasing distance from feeder structures. The oxygen and hydrogen isotope compositions of alunite-forming fluids at Mt. Carlton are lighter than those documented at similar deposits elsewhere, probably due to the high paleolatitude (~S60°) of northeastern Australia in the early Permian. Veins of coarse-grained, banded plumose alunite (δ34S = 0.4– 7.0‰; δ18OSO4 = 2.3–6.0‰; δ18OOH = –10.3 to –2.9‰; δD = –106 to –93‰) formed within feeder structures during the final stages of advanced argillic alteration. Epithermal mineralization was deposited subsequently, initially as fracture- and fissure-filling, Au-Cu–rich assemblages within feeder structures at depth. As the mineralizing fluids discharged into lakes, they produced syngenetic Ag-barite ore. Isotope data for ore-related sulfides and sulfosalts (δ34S = –15.0 to –3.0‰) and barite (δ34S = 22.3–23.8‰; δ18OSO4 = –0.2 to 1.3‰), and microthermometric data for primary fluid inclusions in barite (Th = 116°– 233°C; 0.0–1.7 wt % NaCl), are consistent with metal deposition at temperatures of ~200 ± 40°C (for Au-Cu mineralization in V2 pit) and ~150 ± 30°C (Ag mineralization in A39 pit) from a low-salinity, sulfur- and metal-rich magmatic-hydrothermal liquid that mixed with vapor-heated meteoric water. The mineralizing fluids initially had a high-sulfidation state, producing enargite-dominated ore with associated silicification of the early-altered wall rock. With time, the fluids evolved to an intermediate-sulfidation state, depositing sphalerite- and tennantite-dominated ore mineral assemblages. Void-filling massive dickite (δ18O = –1.1 to 2.1‰; δD = –121 to –103‰) with pyrite was deposited from an increasingly diluted magmatic-hydrothermal liquid (≥70% meteoric component) exsolved from a progressively degassed magma. Gypsum (δ34S = 11.4–19.2‰; δ18OSO4 = 0.5–3.4‰) occurs in veins within postmineralization faults and fracture networks, likely derived from early anhydrite that was dissolved by circulating meteoric water during extensional deformation. This process may explain the apparent scarcity of hypogene anhydrite in lithocaps elsewhere. While the Mt. Carlton system is similar to those that form subaerial high-sulfidation epithermal deposits, it also shares several key characteristics with magmatic-hydrothermal systems that form base and precious metal mineralization in shallow-submarine volcanic arc and back-arc settings. The lacustrine paleosurface features documented at Mt. Carlton may be useful as exploration indicators for concealed epithermal mineralization in similar extensional terranes elsewhere.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Anatoly M. Sazonov ◽  
Aleksei E. Romanovsky ◽  
Igor F. Gertner ◽  
Elena A. Zvyagina ◽  
Tatyana S. Krasnova ◽  
...  

The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200 °C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested.


2014 ◽  
Vol 454 (1) ◽  
pp. 68-71
Author(s):  
A. P. Borozdin ◽  
Yu. S. Polekhovskii ◽  
S. A. Bushmin ◽  
V. A. Glebovitskii ◽  
B. V. Belyatskii ◽  
...  

1994 ◽  
Vol 89 (9) ◽  
pp. 360-364 ◽  
Author(s):  
Yoshihiro ISHIZUKA ◽  
Mitsuhiro NAKAGAWA
Keyword(s):  

Author(s):  
Dina Klimentyeva ◽  
Thomas Driesner ◽  
Albrecht von Quadt ◽  
Trajča Tončić ◽  
Christoph Heinrich

AbstractThe Cu-Au deposit of Bor (Serbia) represents a continuum of mineralization styles, from porphyry-style ore occurring in quartz-magnetite-chalcopyrite veins and chalcopyrite disseminations to high-sulfidation epithermal Cu-Au ores in pyrite-chalcopyrite and anhydrite-sulfide veins. Decisive for the great economic importance of Bor is the presence of exceptionally rich high-sulfidation massive sulfide orebodies, composed of pyrite + covellite + chalcocite/digenite and minor anhydrite and enargite. They form irregular bodies measuring 0.5–10 million tons of ore grading up to 7% Cu, hosted by andesites and surrounded by intense argillic alteration. This study focuses on a small but rich underground orebody mined out recently, where limited drillcore is preserved for quantitative geochemical study. This paper documents the vein relationships within the deep porphyry-style orebody of Borska Reka, the transitional porphyry-epithermal veins, and the overlying and laterally surrounding epithermal massive sulfides of the Bor deposit. Geological observations indicate that the formation of massive sulfide orebodies concludes the ore formation. Mass balance calculations, recast into geologically realistic bulk fluid-rock reactions, confirm textural evidence that near-isovolumetric replacement of andesite host rocks is the dominant formation mechanism of massive sulfide orebodies at Bor, whereby all lithophile elements including Si are dissolved and only Ti stays relatively immobile. While net volume changes for individual mineralization styles within the massive sulfide orebody vary from − 16% volume loss to + 127% volume gain, overall volume change for the whole massive sulfide orebody was probably slightly negative. Brecciation is important only as means of creating channelways for reactive fluid that turns the andesite protolith into massive sulfide, whereas net breccia infill occurred only locally.


2012 ◽  
Vol 12 (7) ◽  
pp. 2259-2270 ◽  
Author(s):  
S. Rontogianni ◽  
K. I. Konstantinou ◽  
C.-H. Lin

Abstract. The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004–2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF) earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7–8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1) HF event that occurred on 24 April 2006 at a depth of 5–6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.


Sign in / Sign up

Export Citation Format

Share Document