scholarly journals Διερεύνηση λειτουργίας μετατροπέων μείωσης της περιττής επεξεργάσιμης ισχύος (R2P2) για εξοικονόμηση ενέργειας σε μέσα μεταφοράς

2019 ◽  
Author(s):  
Χαρούλα Ζωγόγιαννη-Βέκιτς

Λόγω της μείωσης των ενεργειακών πόρων από ορυκτά καύσιμα, αναζητούνται συνεχώς μέθοδοι εξοικονόμησης ενέργειας για τα μέσα μεταφοράς. Ειδικότερα, στα πλωτά μέσα, η ανάγκη για εξοικονόμηση είναι επιτακτική, λόγω της βραδείας εξέλιξης του πλήρους εξηλεκτρισμού τους και της υποχρεωτικής συμμόρφωσης σε κανονισμούς που αφορούν τη μείωση των εκπομπών ρύπων. Μία από τις μεθόδους εξοικονόμησης αποτελεί ένα σύστημα ανάκτησης της θερμικής ενέργειας των καυσαερίων (waste heat recovery system -WHRS) και της μετατροπής της σε ηλεκτρική με τη χρήση θερμοηλεκτρικών μονάδων (thermoelectric generators- TEGs). Η παραγόμενη ισχύς μπορεί να διοχετευθεί στο σύστημα παροχής του πλοίου, αυξάνοντας το βαθμό απόδοσής του και μειώνοντας το περιβαλλοντικό του αποτύπωμα.Βασικός σκοπός της παρούσας διδακτορικής διατριβής είναι η μελέτη ενός τέτοιου συστήματος. Πιο συγκεκριμένα, αναζητούνται οι κατάλληλοι ηλεκτρονικοί μετατροπείς ισχύος τύπου ανύψωσης τάσης προκειμένου να προσαρμοστεί το επίπεδο τάσης των TEGs στο επίπεδο τάσης του ζυγού διασύνδεσης, δεδομένου ότι οι TEGs παράγουν σχετικά χαμηλή τάση. Για το σκοπό αυτό, μελετάται μια οικογένεια μετατροπέων που σχηματίζονται βάσει της λογικής της μείωσης της περιττής επεξεργάσιμης ισχύος (reduced redundant power processing- R2P2). Επιπρόσθετα, αναζητείται και μία κατάλληλη στρατηγική ελέγχου προκειμένου να ρυθμίζεται η διοχέτευση της παραγόμενης ισχύος από τις TEGs στο δίκτυο του πλοίου.Αρχικά, διερευνώνται διάφορες περιπτώσεις συνδέσεων και διαμορφώσεων των επιμέρους μετατροπέων που αποτελούν τους μη-απομονωμένους μετατροπείς R2P2. Συνεπώς, η διερεύνηση αφορά μετατροπείς R2P2, οι οποίοι συμπεριλαμβάνουν ως εσωτερικούς μετατροπείς χωρίς απομόνωση τις τρεις κλασσικές τοπολογίες μετατροπέων συνεχούς τάσης σε συνεχή τάση, δηλαδή τους μετατροπείς Buck, Boost και Buck-Boost. Με βάση αυτές τις περιπτώσεις, προτείνεται ένα σύνολο κανόνων για την εύρεση όλων των υλοποιήσιμων/εφικτών τοπολογιών.Σε επόμενο βήμα, εξάγονται θεωρητικές σχέσεις του κέρδους τάσης και της απόδοσης των υλοποιήσιμων διαμορφώσεων/τοπολογιών R2P2, με βάση τα ηλεκτρικά χαρακτηριστικά (κέρδος τάσης και απόδοση) των επιμέρους μετατροπέων που τις αποτελούν. Οι σχέσεις αυτές ισχύουν για όλες τις περιοχές λειτουργίας ενός μετατροπέα R2P2. Επιπλέον, μέσω αυτών των σχέσεων, οι τοπολογίες R2P2 είναι δυνατόν να συγκριθούν ως προς το λόγο ανύψωσης τάσης και το βαθμό απόδοσής τους, ώστε να επιλέγεται κάθε φορά ο συνδυασμός (ή οι συνδυασμοί) που είναι κατάλληλοι για μια δεδομένη εφαρμογή.Κατόπιν, αναδεικνύεται η ύπαρξη τεσσάρων περιοχών λειτουργίας στην οικογένεια των μετατροπέων R2P2. Αναλύεται η λειτουργία του μετατροπέα R2P2 I-IIA Buck-Boost+/Boost-, ο οποίος εμφανίζει ένα από τα υψηλότερα κέρδη τάσης μεταξύ όλων των διαμορφώσεων R2P2. Εξάγονται θεωρητικές σχέσεις και για τις τέσσερεις περιοχές λειτουργίας του, με βάση τις εξισώσεις που διέπουν τη λειτουργία των επιμέρους μετατροπέων που τον αποτελούν. Με αυτόν τον τρόπο, αποδεικνύεται ότι οι γενικές σχέσεις που εξάγονται για μια τοπολογία R2P2 ισχύουν για όλες τις περιοχές λειτουργίας της. Η ανάλυση αυτή μπορεί να επεκταθεί σε όλους τους μετατροπείς R2P2. Επιπρόσθετα, αποδεικνύεται ότι ο μετατροπέας R2P2 I-IIA Buck-Boost + / Boost-, παρά το υψηλό κέρδος τάσης του, εντούτοις παρουσιάζει χαμηλή απόδοση, συνεπώς κρίνεται τελικά ακατάλληλος για εφαρμογές υψηλού λόγου ανύψωσης τάσης και υψηλής ισχύος. Κατόπιν, εξετάζεται η δυνατότητα βελτιστοποίησης της απόδοσης των τοπολογιών R2P2.Αφού αναπτυχθεί ένα μοντέλο απωλειών για τους επιμέρους μετατροπείς, εφαρμόζεται ένας αλγόριθμος βελτιστοποίησης, ώστε να ευρεθεί ο συνδυασμός των λόγων ανύψωσης τάσης των επιμέρους μετατροπέων μέσω του οποίου επιτυγχάνεται η βέλτιστη απόδοση. Η μεθοδολογία αυτή εφαρμόζεται στο μετατροπέα R2P2 I-IIB Buck-Boost+/Boost+ (χωρίς να μειώνεται η γενικότητά της), ο οποίος χαρακτηρίζεται από το βέλτιστο συνδυασμό υψηλού λόγου ανύψωσης τάσης και υψηλής απόδοσης και συνεπώς κρίνεται ο καταλληλότερος για το προτεινόμενο WHRS. Έπειτα, διερευνάται η επίδραση της μη ιδανικότητας των στοιχείων στο κέρδoς τάσης των μετατροπέων R2P2. Η ανάλυση αυτή διεξάγεται για το μετατροπέα R2P2 I-IIB Buck-Boost+/Boost+ για ιδανικά και μη ιδανικά στοιχεία, εξάγοντας αναλυτικές σχέσεις του κέρδους τάσης του και για τις δύο περιοχές λειτουργίας του.Τέλος, προτείνεται, αναλύεται, και προσομοιώνεται ένα σύστημα εξοικονόμησης ενέργειας για εφαρμογή σε πλοίο με DC ζυγό. Το προτεινόμενο σύστημα περιλαμβάνει θερμοηλεκτρικές γεννήτριες και τον επιλεγμένο μετατροπέα R2P2 I-IIB Buck-Boost+/Boost+ και διερευνάται η συμπεριφορά του υπό διάφορες συνθήκες λειτουργίας. Στα πλαίσια αυτού του συστήματος,προτείνεται ένας αλγόριθμος προσδιορισμού της ισχύος που απομαστεύεται από τις θερμοηλεκτρικές γεννήτριες. Ο αλγόριθμος αυτός καλύπτει τόσο την περίπτωση μέγιστης απομάστευσης ισχύος, όσο και τη λειτουργία αυτών σε σημείο διάφορο του μεγίστου, ώστε η παραγωγή ενέργειας να ανταποκρίνεται πλήρως κάθε φορά στις απαιτήσεις των εκάστοτε φορτίων που είναι συνδεμένα στο DC ζυγό ενός μέσου μεταφοράς. Η προτεινόμενη στρατηγική ελέγχου μπορεί να επεκταθεί και σε AC συστήματα με ικανότητα αδιάλειπτης παροχής ενέργειας κατά τη διάρκεια βύθισης τάσης του δικτύου (fault ride through capability), όπου απαιτείται ταυτόχρονος έλεγχος της ενεργού και αέργου ισχύος.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


2021 ◽  
Vol 234 ◽  
pp. 113947
Author(s):  
Alexandre Persuhn Morawski ◽  
Leonardo Rodrigues de Araújo ◽  
Manuel Salazar Schiaffino ◽  
Renan Cristofori de Oliveira ◽  
André Chun ◽  
...  

2012 ◽  
Vol 204-208 ◽  
pp. 4229-4233 ◽  
Author(s):  
Fang Tian Sun ◽  
Na Wang ◽  
Yun Ze Fan ◽  
De Ying Li

Drain water at 35°C was directly discharged into sewer in most of barbershop with Electric water heater. Heat utilization efficiency is lower, and energy grade match between input and output is not appropriate in most of barbershops. Two waste heat recovery systems were presented according to the heat utilization characteristics of barbershops and principle of cascade utilization of energy. One was the waste heat recovery system by water-to-water heat exchanger (WHR-HE), and the other is the waste heat recovery system by water-to-water heat exchanger and high-temperature heat pump (WHR-CHEHP). The two heat recovery systems were analyzed by the first and second Laws of thermodynamic. The analyzed results show that the energy consumption can be reduced about 75% for HR-HE, and about 98% for WHR-CHEHP. Both WHR-HE and WHR-CHEHP are with better energy-saving effect and economic benefits.


Author(s):  
Salman Abdu ◽  
Song Zhou ◽  
Malachy Orji

Highly increased fuel prices and the need for greenhouse emissions reduction from diesel engines used in marine engines in compliance with International Maritime Organization (IMO) on the strict regulations and guidelines for the Energy Efficiency Design Index (EEDI) make diesel engine exhaust gas heat recovery technologies attractive. The recovery and utilization of waste heat not only conserves fuel, but also reduces the amount of waste heat and greenhouse gases dumped to the environment .The present paper deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from waste heat exhaust gases in a marine diesel engine. This analysis is utilized to identify the sources of losses in useful energy within the components of the system for three different configurations of waste heat recovery system considered. The second law efficiency and the exergy destroyed of the components are investigated to show the performance of the system in order to select the most efficient waste heat recovery system. The effects of ambient temperature are also investigated in order to see how the system performance changes with the change of ambient temperature. The results of the analysis show that in all of the three different cases the boiler is the main source of exergy destruction and the site of dominant irreversibility in the whole system it accounts alone for (31-52%) of losses in the system followed by steam turbine and gas turbine each accounting for 13.5-27.5% and 5.5-15% respectively. Case 1 waste heat recovery system has the highest exergetic efficiency and case 3 has the least exergetic efficiency.


Sign in / Sign up

Export Citation Format

Share Document