scholarly journals Oxygen Contamination of Multilayer TiNx — SiO2 — Si Structures found by Resonant RBS Analysis

2019 ◽  
Vol 10 ◽  
pp. 20
Author(s):  
X. A. Aslanoglou ◽  
E. Evangelou ◽  
N. Konofaos ◽  
Ch. Dimitriades ◽  
E. Kossionides ◽  
...  

Multi layer structures consisting of TiN — SiO2 — Si layers operating as MOS devices were constructed and tested for their electrical properties. RBS and resonance reaction analysis were performed for the characterisation of the structure of the devices. The results show a correlation between the structure found by RBS and the electrical performance of the devices.

2020 ◽  
Vol 9 ◽  
pp. 315
Author(s):  
X. Aslanoglou ◽  
E. Evangelou ◽  
N. Konofaos ◽  
Ch. Dimitriades ◽  
E. Kossionides ◽  
...  

Multilayer structures consisting of TiNx-SiO2-Si layers operating as MOS devices were constructed and tested for their electrical properties. RBS measurements were performed for the characterization of the structure of the devices. The results show a correlation between the structure found by RBS and the electrical performance of the devices.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 2
Author(s):  
Arash M. Shahidi ◽  
Theodore Hughes-Riley ◽  
Carlos Oliveira ◽  
Tilak Dias

Knitted electrodes are a key component to many electronic textiles including sensing devices, such as pressure sensors and heart rate monitors; therefore, it is essential to assess the electrical performance of these knitted electrodes under different mechanical loads to understand their performance during use. The electrical properties of the electrodes could change while deforming, due to an applied load, which could occur in the uniaxial direction (while stretched) or multiaxial direction (while compressed). The properties and performance of the electrodes could also change over time when rubbed against another surface due to the frictional force and generated heat. This work investigates the behavior of a knitted electrode under different loading conditions and after multiple abrasion cycles.


2004 ◽  
Author(s):  
Chao-Liang Chang ◽  
Uei-Ming Jow ◽  
Chao-Ta Huang ◽  
Hsiang-Chi Liu ◽  
Jr-Yuan Jeng ◽  
...  

The micro-inductor is a key component in wireless power transmission micro modules. In this paper, an optimum design for the micro-inductor was studied and related MEMS fabrication techniques were also developed. Commercial electromagnetic property analysis software, ANSOFT, was used to screen the main design factors of the micro-inductor. It was found that the high inductance and high quality factors of the micro-inductor implied high power transmission efficiency for the micro-module’s wireless power transmission. The electrical performance of the micro-inductor was affected by the thermal stress and thermal strain induced in the operational environment of the wireless power transmission micro-module. In order to investigate the reliability of the micro-inductor, commercial stress analysis software, ANSYS, was used to calculate thermal stress and thermal strain. The deformed model of the micro-inductor was then imported into ANSOFT in order to calculate its electrical properties. Glass substrate Pyrex 7740 was used to reduce the substrate loss of the magnetic flux of the micro-inductor. The surface micromachining technique, a kind of MEMS processing, was chosen to fabricate the micro-inductor; the coil of the micro-inductor was electroplated with copper to reduce the series resistance. The minimum line width and line space of the coil were 20 μm and 20 μm respectively. Polyimide (PI) was used for supporting the structure of micro-inductors. The maximum shear stress was 74.09MPa and the maximum warpage was 2.197 μm at a thermal loading of 125°C. For the simulated data, the most suitable areas for 31-turn and 48-turn coils were at an area ratio of 1.27 and 2, respectively. The electrical properties of the inductors changed slightly under thermal loading.


2008 ◽  
Vol 5 (4) ◽  
pp. 156-160 ◽  
Author(s):  
Peter Uhlig ◽  
Dirk Manteuffel ◽  
Stefan Malkmus

The adaptation of the LTCC (Low Temperature Cofired Ceramics) process for an unusually high number of layers (up to 50) will be described and explained in this paper. Special attention will be paid to lamination, debindering, and cofiring of the LTCC stack. The influence of necessary process variations on electrical properties such as permittivity will be studied. Very often the number of layers is determined by the complexity of the circuit. Here a minimum substrate height is required for the electrical performance of a patch antenna, particularly in terms of bandwidth. A dual band antenna for two Galileo bands at 1.58 GHz and 1.18 GHz was realized as a combination of two coupled patches. Circular polarization was attained by separately feeding each patch with a hybrid coupler. These features add further layers to an already considerable substrate height.


2002 ◽  
Author(s):  
A. Lian ◽  
L. Martinu ◽  
J.E. Klemberg-Sapieha ◽  
M.R. Wertheimer

2007 ◽  
Vol 996 ◽  
Author(s):  
Takuya Sugawara ◽  
Raghavasimhan Sreenivasan ◽  
Yasuhiro Oshima ◽  
Paul C. McIntyre

AbstractGermanium and hafnium-dioxide (HfO2) stack structures' physical and electrical properties were studied based on the comparison of germanium and silicon based metal-oxide-semiconductor (MOS) capacitors' electrical properties. In germanium MOS capacitor with oxide/oxynitride interface layer, larger negative flat-band-voltage (Vfb) shift compared with silicon based MOS capacitors was observed. Secondary ion mass spectrum (SIMS) characteristics of HfO2-germanium stack structure with germanium oxynitride (GeON) interfacial layer showed germanium out diffusion into HfO2. These results indicate that the germanium out diffusion into HfO2 would be the origin of the germanium originated negative Vfb shift. Using Ta3N5 layer as a germanium passivation layer, reduced Vfb shift and negligible hysteresis were observed. These results suggest that the selection of passivation layer strongly influences the electrical properties of germanium based MOS devices.


Author(s):  
J. Hui ◽  
T.Y. Chiu ◽  
S. Wong ◽  
W.G. Oldham

1985 ◽  
Vol 48 ◽  
Author(s):  
L. E. Lapides ◽  
R. L. Whitney ◽  
C. A. Crosson

ABSTRACTThe properties of selected dopants in liquid-phase epitaxial (LPE) layers of HgCdTe have been studied using secondary ion mass spectrometry (SIMS), Hall-effect, and capacitance-voltage (C-V) measurements. The layers were grown from Hg-rich melts on {111}-oriented CdTe and CdZnTe single-crystal substrates. Diodes, for the C-V measurements, were homojunctions formed by ion implantation or heterojunctions formed by the growth of a second layer on the base layer. Dopant concentration distributions in both single- and double-layer structures were characterized by SIMS and C-V measurements. The dopant profiles measured by SIMS were quantified using relative sensitivity factors calculated from ion implanted impurity profiles measured on standard reference samples. Using specialized SIMS techniques, such as molecular ion spectrometry, As concentrations as low as 2 × 1015 cm−3 have been measured. In the HgCdTe:In/HgCdTe:As system minimal dopant interdiffusion is observed in SIMS profiles. The growth of the second layer has insignificant effect on the As distribution in the base layer, and C-V data indicate that the electrical properties change only slightly. Carrier types and concentrations were determined by Hall effect and C-V measurements. Good agreement between dopant concentrations and carrier concentrations was observed, indicating 100% activation of the dopant atoms, for all dopants studied. Examples of implant calibration profiles, dopant concentration distributions, carrier concentration vs temperature measurements, and 1/C2 vs V data are presented, along with graphs and tables comparing dopant profiles with electrical properties.


Sign in / Sign up

Export Citation Format

Share Document