scholarly journals An updated overview of the geographic and bathymetric distribution of Savalia savaglia

2014 ◽  
Vol 16 (1) ◽  
pp. 128 ◽  
Author(s):  
Mi. GIUSTI ◽  
C. CERRANO ◽  
M. ANGIOLILLO ◽  
L. TUNESI ◽  
S. CANESE

The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data, collected using a ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species.

2020 ◽  
Vol 7 ◽  
Author(s):  
Tal Idan ◽  
Liron Goren ◽  
Sigal Shefer ◽  
Micha Ilan

Sponges hold a key role in benthic environments, and specifically in the Mediterranean Sea. Past events of mass mortality in sponge communities have been linked to extended periods of high-temperature anomalies, yet it is unknown how a gradual change, such as the constant rise in global seawater temperatures, will affect biodiversity. Here we present a case study of Agelas oroides, a common massive sponge in the Mediterranean Sea, found at a wide depth range of 1–150 m. Last documented in the 1970s, A. oroides was considered lost from the Israeli coastal fauna. However, its recent rediscovery in mesophotic depths, where environmental conditions are stable, provided an opportunity to examine whether it can survive the present conditions in the shallow Israeli coast – where temperatures increased by 3°C during the past 60 years, while the nutrients concentration decreased following the damming of the Nile River. To test this hypothesis, A. oroides individuals were collected during winter from mesophotic sponge grounds (100–120 m) and transplanted to a shallow rocky habitat (10 m). Control individuals were transplanted back to the mesophotic habitat. Sponge survival, temperature, and nutrient concentrations were measured in both habitats. The shallow-transplanted sponges’ survival decreased only when the ambient temperature exceeded 28°C. In contrast, the control group at the mesophotic depth, where the temperature never rose above 20°C, survived the duration of the experiment. Our findings suggest that a prolonged period of high temperatures may constitute a major factor in A. oroides survival and disappearance from the Israeli shallow habitats.


2020 ◽  
Author(s):  
Glenda Garelli ◽  
Martina Tazzioli

Abstract This article engages with the centrality that the push–pull theory regained in the context of border deaths in the Mediterranean Sea and particularly as part of the debate against the criminalization of nongovernment organizations (NGOs’) rescue missions at sea. The article opens by illustrating the context in which the push–pull theory re-emerged—after having been part of migration studies’ history books for over a decade—as part of an effort to defend non-state actors engaged in rescue missions in the Mediterranean Sea against an aggressive campaign of illegalilzation conducted by European states. We then take a step back to trace the history of the push–pull theory and its role as a foil for critical migration studies in the past 20 years. Building on this history, the article then turns to interrogating the epistemic and political outcomes that result from bringing evidence against the NGOs’ role as pull factors for migrants. The article closes by advocating for a transformative, rather than evidencing, role of critical knowledge in the current political context where migrants and actors who fight against border deaths are increasingly criminalized.


2021 ◽  
Vol 11 ◽  
pp. 31-44
Author(s):  
Luca Giuseppe Costanzo ◽  
Giuliana Marletta ◽  
Giuseppina Alongi

Biological invasions are considered one of the main threats for biodiversity. In the last decades, more than 60 macroalgae have been introduced in the Mediterranean Sea, causing serious problems in coastal areas. Nevertheless, the impacts of alien macroalgae in deep subtidal systems have been poorly studied, especially in the coralligenous habitats of the eastern coast of Sicily (Italy). Therefore, within the framework of the programme “Progetto Operativo di Monitoraggio (P.O.M.)” of the EU Marine Strategy Framework Directive (MSFD), the aim of the present study was to gain knowledge on the alien macroalgae present in coralligenous habitats of the Marine Protected Area (MPA) Isole Ciclopi, along the Ionian coast of Sicily. By Remotely Operated Vehicle (ROV) videos and destructive samples analysed in the laboratory, five alien species were identified: Caulerpa cylindracea, Antithamnion amphigeneum, Asparagopsis armata, Bonnemaisonia hamifera, and Lophocladia lallemandii. Since A. amphigeneum was previously reported only in the western Mediterranean and Adriatic Sea, the present report represents the first record of this species in the eastern Mediterranean. The ROV surveys showed that the alien species do not have a high coverage and do not appear to be invasive in the coralligenous area of the MPA. Since ocean temperatures are predicted to increase as climate change continues and alien species are favoured by warming of the Mediterranean Sea, the risk of biotic homogenisation caused by the spread of alien species is realistic. Therefore, further studies are needed to assess the incidence and invasiveness of alien species in phytobenthic assemblages of coralligenous in the MPA.


2021 ◽  
Author(s):  
Romain Escudier ◽  
Emanuela Clementi ◽  
Mohamed Omar ◽  
Andrea Cipollone ◽  
Jenny Pistoia ◽  
...  

<p>In order to be able to predict the future ocean climate and weather, it is crucial to understand what happened in the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics such as deep convection and thermohaline circulation or coastal hydrodynamics. To this end, effective tools are reanalyses or reconstructions of the past ocean state. </p><p>Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar).</p><p>The model has a horizontal resolution of 1/24<strong>°</strong> and 141 vertical z* levels and provides daily and monthly 3D values of temperature, salinity, sea level and currents. Hourly ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from the global CMCC C-GLORS reanalysis. 39 rivers model the freshwater input to the basin plus the Dardanelles. The reanalysis covers 33-years, initialized from SeaDataNet climatology in January 1985, getting to a nominal state after a two-years spin-up and ending in 2019. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry data.</p><p>This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the skill and a better representation of the main dynamics of the region compared to the previous, lower resolution (1/16<strong>°</strong>) reanalysis. Temperature and salinity RMSE is decreased by respectively 12% and 20%. The deeper biases in salinity of the previous version are corrected and the new reanalysis present a better representation of the deep convection in the Gulf of Lion. Climate signals show continuous increase of the temperature due to climate change but also in salinity.</p><p>The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures.</p>


2018 ◽  
Vol 32 (1) ◽  
pp. 100 ◽  
Author(s):  
Elena Beli ◽  
Giorgio Aglieri ◽  
Francesca Strano ◽  
Davide Maggioni ◽  
Max J. Telford ◽  
...  

The early origin and evolutionary radiation of graptolites (Hemichordata:Pterobranchia) is a story told almost entirely in the fossil record, but for four extant species of the genus Rhabdopleura Allman, 1869. Here we report the discovery of a fifth species, Rhabdopleura recondita, sp. nov., at a depth range of 2–70m from the Adriatic and Ionian Seas, always associated with bryozoans in coralligenous habitats. This is the first pterobranch record in Italian waters, and the second in the Mediterranean Sea. The new species is characterised by: (1) tubaria with smooth creeping tubes adherent to the inside of empty bryozoan zooecia; (2) erect outer tubes with a graptolite, fusellar-like organisation; and (3) zooids that extend from a black stolon, which is free from the creeping tube. Each of the paired feeding arms has two rows of tentacles that do not extend to the arm tip. The distal ends of the arms, the collar and the cephalic shield are replete with black granules. Phylogenetic analyses of individual and concatenated gene sequences of mitochondrial 16S rDNA and nuclear 18S rDNA support the validity of R. recondita as a new species. Finally, we discuss the global biogeographic and habitat distributions of the extant Rhabdopleura representatives. http://zoobank.org/urn:lsid:zoobank.org:pub:82C6A51E-F8F4-44AF-AD8F-16873BE80D03


Sign in / Sign up

Export Citation Format

Share Document