scholarly journals AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 30 ◽  
Author(s):  
Shennan Aibel Weiss ◽  
Ali A Asadi-Pooya ◽  
Sitaram Vangala ◽  
Stephanie Moy ◽  
Dale H Wyeth ◽  
...  

Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (p<0.01). Fewer readers could lateralize seizure-onset (p<0.05). The confidence measures of the assignments were low (probable-unlikely), but increased using AR2 (p<0.05). The ICC for identifying the time of seizure-onset was 0.15 (95% confidence interval (CI), 0.11-0.18) using AR1 and 0.26 (95% CI 0.21-0.30) using AR2.  The EEG interpretations were often consistent with behavioral, neurophysiological, and neuro-radiological findings, with left sided assignments correct in 95.9% (CI 85.7-98.9%, n=4) of cases using AR2, and 91.9% (77.0-97.5%) (n=4) of cases using AR1. Conclusions: EEG artifact reduction methods for localizing seizure-onset does not result in high rates of interpretability, reader confidence, and inter-reader agreement. However, the assignments by groups of readers are often congruent with other clinical data. Utilization of the AR2 software method may improve the validity of ictal EEG artifact reduction.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 30
Author(s):  
Shennan Aibel Weiss ◽  
Ali A Asadi-Pooya ◽  
Sitaram Vangala ◽  
Stephanie Moy ◽  
Dale H Wyeth ◽  
...  

Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (p<0.01). Fewer readers could lateralize seizure-onset (p<0.05). The confidence measures of the assignments were low (probable-unlikely), but increased using AR2 (p<0.05). The ICC for identifying the time of seizure-onset was 0.15 (95% confidence interval (CI), 0.11-0.18) using AR1 and 0.26 (95% CI 0.21-0.30) using AR2.  The EEG interpretations were often consistent with behavioral, neurophysiological, and neuro-radiological findings, with left sided assignments correct in 95.9% (CI 85.7-98.9%, n=4) of cases using AR2. Conclusions: EEG artifact reduction methods for localizing seizure-onset does not result in high rates of interpretability, reader confidence, and inter-reader agreement. However, the assignments by groups of readers are often congruent with other clinical data. Utilization of the AR2 software method may improve the validity of ictal EEG artifact reduction.


Author(s):  
Mohammed M. Jan ◽  
Mark Sadler ◽  
Susan R. Rahey

Electroencephalography (EEG) is an important tool for diagnosing, lateralizing and localizing temporal lobe seizures. In this paper, we review the EEG characteristics of temporal lobe epilepsy (TLE). Several “non-standard” electrodes may be needed to further evaluate the EEG localization, Ictal EEG recording is a major component of preoperative protocols for surgical consideration. Various ictal rhythms have been described including background attenuation, start-stop-start phenomenon, irregular 2-5 Hz lateralized activity, and 5-10 Hz sinusoidal waves or repetitive epileptiform discharges. The postictal EEG can also provide valuable lateralizing information. Postictal delta can be lateralized in 60% of patients with TLE and is concordant with the side of seizure onset in most patients. When patients are being considered for resective surgery, invasive EEG recordings may be needed. Accurate localization of the seizure onset in these patients is required for successful surgical management.


2018 ◽  
Vol 05 (01) ◽  
pp. 009-012 ◽  
Author(s):  
Kalpesh Sanariya ◽  
Arun Garg ◽  
Aniruddha More ◽  
Atma Bansal

AbstractBenign epileptiform variants (BEVs) are often noted in routine electroencephalogram (EEG) monitoring and are sometimes misinterpreted as epileptiform discharges. Six and 14 Hz positive spikes are one of such BEVs seen especially in children. However, these variants can also be seen in intensive care unit EEG recordings. Here, we have reviewed the history and electrical details of these 6 and 14 Hz variants with their clinical significance.


2004 ◽  
Vol 19 (3) ◽  
pp. 369-377
Author(s):  
Giorgio Battaglia ◽  
Silvana Franceschetti ◽  
Luisa Chiapparini ◽  
Elena Freri ◽  
Stefania Bassanini ◽  
...  

Patients affected by periventricular nodular heterotopia are frequently characterized by focal drug-resistant epilepsy. To investigate the role of periventricular nodules in the genesis of seizures, we analyzed the electroencephalographic (EEG) features of focal seizures recorded by means of video-EEG in 10 patients affected by different types of periventricular nodular heterotopia and followed for prolonged periods of time at the epilepsy center of our institute. The ictal EEG recordings with surface electrodes revealed common features in all patients: all seizures originated from the brain regions where the periventricular nodular heterotopia were located; EEG patterns recorded on the leads exploring the periventricular nodular heterotopia were very similar both at the onset and immediately after the seizure's end in all patients. Our data suggest that seizures are generated by abnormal anatomic circuitries, including the heterotopic nodules and adjacent cortical areas. The major role of heterotopic neurons in the genesis and propagation of epileptic discharges must be taken into account when planning surgery for epilepsy in patients with periventricular nodular heterotopia. ( J Child Neurol 2005;20:369—377).


2021 ◽  
Author(s):  
Benedikt Hofmeister ◽  
Celina von Stülpnagel ◽  
Cornelia Betzler ◽  
Francesca Mari ◽  
Alessandra Renieri ◽  
...  

AbstractNicolaides–Baraitser syndrome (NCBRS), caused by a mutation in the SMARCA2 gene, which goes along with intellectual disability, congenital malformations, especially of face and limbs, and often difficult-to-treat epilepsy, is surveyed focusing on epilepsy and its treatment. Patients were recruited via “Network Therapy of Rare Epilepsies (NETRE)” and an international NCBRS parent support group. Inclusion criterion is NCBRS-defining SMARCA2 mutation. Clinical findings including epilepsy classification, anticonvulsive treatment, electroencephalogram (EEG) findings, and neurodevelopmental outcome were collected with an electronic questionnaire. Inclusion of 25 NCBRS patients with epilepsy in 23 of 25. Overall, 85% of the participants (17/20) reported generalized seizures, the semiology varied widely. EEG showed generalized epileptogenic abnormalities in 53% (9/17), cranial magnetic resonance imaging (cMRI) was mainly inconspicuous. The five most frequently used anticonvulsive drugs were valproic acid (VPA [12/20]), levetiracetam (LEV [12/20]), phenobarbital (PB [8/20]), topiramate (TPM [5/20]), and carbamazepine (CBZ [5/20]). LEV (9/12), PB (6/8), TPM (4/5), and VPA (9/12) reduced the seizures' frequency in more than 50%. Temporary freedom of seizures (>6 months) was reached with LEV (4/12), PB (3/8), TPM (1/5, only combined with PB and nitrazepam [NZP]), and VPA (4/12). Seizures aggravation was observed under lamotrigine (LTG [2/4]), LEV (1/12), PB (1/8), and VPA (1/12). Ketogenic diet (KD) and vagal nerve stimulation (VNS) reduced seizures' frequency in one of two each. This first worldwide retrospective analysis of anticonvulsive therapy in NCBRS helps to treat epilepsy in NCBRS that mostly shows only initial response to anticonvulsive therapy, especially with LEV and VPA, but very rarely shows complete freedom of seizures in this, rather genetic than structural epilepsy.


Author(s):  
Fatma Hanci ◽  
Sevim Türay ◽  
Yusuf Öztürk ◽  
Nimet Kabakus

AbstractIt has been known for several decades that epilepsy and autism spectrum disorders (ASD) are related to each other. Epilepsy frequently accompanies ASD. The purpose of this study was to investigate relationship between clinical and electroencephalogram (EEG) findings in ASD patients and to identify EEG characteristics that may create a disposition to epilepsy in ASD by examining differences in clinical and EEG findings between patients diagnosed with ASD without epilepsy and ASD with epilepsy. A total of 102 patients aged 2 to 18 years and diagnosed with ASD based on Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) diagnostic criteria between January 2017 and June 2019 were included in the study. Patients were assigned into two groups: (1) ASD with epilepsy and (2) ASD without epilepsy. Clinical findings were retrieved from patients' files, and EEG findings from first EEG records in the EEG laboratory at the time of diagnosis. EEG findings were defined as central, parietal, frontal, temporal, or generalized, depending on the location of rhythmic discharges. The incidence of epilepsy in our ASD patients was 33.7% and that of febrile convulsion was 4%. Generalized motor seizures were the most common seizure type. Epileptic discharges most commonly derived from the central and frontal regions. These abnormalities, especially frontal and central rhythmic discharges, may represent a precursor for the development of epilepsy in ASD patients.


2006 ◽  
Vol 15 (5) ◽  
pp. 500-514 ◽  
Author(s):  
Robert Leeb ◽  
Claudia Keinrath ◽  
Doron Friedman ◽  
Christoph Guger ◽  
Reinhold Scherer ◽  
...  

Healthy participants are able to move forward within a virtual environment (VE) by the imagination of foot movement. This is achieved by using a brain-computer interface (BCI) that transforms thought-modulated electroencephalogram (EEG) recordings into a control signal. A BCI establishes a communication channel between the human brain and the computer. The basic principle of the Graz-BCI is the detection and classification of motor-imagery-related EEG patterns, whereby the dynamics of sensorimotor rhythms are analyzed. A BCI is a closed-loop system and information is visually fed back to the user about the success or failure of an intended movement imagination. Feedback can be realized in different ways, from a simple moving bar graph to navigation in VEs. The goals of this work are twofold: first, to show the influence of different feedback types on the same task, and second, to demonstrate that it is possible to move through a VE (e.g., a virtual street) without any muscular activity, using only the imagination of foot movement. In the presented work, data from BCI feedback displayed on a conventional monitor are compared with data from BCI feedback in VE experiments with a head-mounted display (HMD) and in a high immersive projection environment (Cave). Results of three participants are reported to demonstrate the proof-of-concept. The data indicate that the type of feedback has an influence on the task performance, but not on the BCI classification accuracy. The participants achieved their best performances viewing feedback in the Cave. Furthermore the VE feedback provided motivation for the subjects.


2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


Sign in / Sign up

Export Citation Format

Share Document